
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Electrokinetic flow and electric conduction of a salt-free 
solution in a charged slit  

ABSTRACT 
The electrokinetic flow and attended electric 
conduction of a salt-free fluid, which contains 
counterions only, in a narrow slit channel subjected 
to a pressure gradient and an electric field were 
analytically investigated. The surface charge densities 
of the two plane walls of the slit are uniform but 
can be unequal. The electric potential and fluid 
velocity profiles were determined by solving the 
exact and linearized Poisson-Boltzmann equations 
and modified Navier-Stokes equation, respectively. 
Explicit formulas were obtained for the 
electroosmotic velocity and electric conductivity 
as functions of a dimensionless surface charge 
density and the ratio of surface charge densities of 
the slit walls. The relative surface potentials, average 
electroosmotic velocity, and average electric 
conductivity grow monotonically with an increase 
in the dimensionless surface charge density (or 
ratio of the half thickness of the slit to the Debye 
screening length) for a given value of the surface 
charge density ratio. But, when the surface charge 
density is high, the growths of the relative surface 
potentials and average electroosmotic velocity with 
its increase are suppressed noticeably owing to the 
effect of counterion condensation. For a salt-free 
solution in a planar slit with two equally charged 
walls, its relative surface potential and average 
electroosmotic velocity are greater but its average 
electric conductivity is smaller than the corresponding 
results in a circular tube provided that the thickness 
of the slit equals the diameter of the tube.  

KEYWORDS: electroosmotic velocity, electric 
conductivity, salt-free fluid, slit microchannel and 
nanochannel, arbitrary surface charge densities. 
 
1. Introduction  
An ionic solution bounded by a charged solid 
surface makes up an electric double layer along 
their interface, where the diffuse ions have a net 
charge opposite in sign but equal in magnitude to 
that of the surface. When a charged microchannel 
or nanochannel filled with an ionic solution is 
subjected to an imposed electric field and/or pressure 
gradient that interact with the double layer, 
electrokinetic flows, such as electroosmosis, take 
place [1-6]. In addition to their fundamental interests 
in many scientific realms, electrokinetic flows have 
wide applications in the transport, separation, 
manipulation, mixing, and energy conversion of 
fluids in various practical systems (e.g., microfluidic 
and nanofluidic devices) [7-10].  
The electrokinetic flow of a salt-free solution, 
containing no added electrolyte but solely 
counterions produced by a dissociation reaction 
occurring at a boundary, differs from that of a 
salt-containing solution [11-17]. When the charge 
density is high at the boundary, the counterions in 
the solution without added salt will be condensed 
remarkably in the double layer, known as the 
counterion condensation. Qiao and Aluru [18] 
investigated the electroosmosis of a salt-free solution 
in charged slit nanochannels and found that the 
fluid continuum theory is applicable for the case 
of channel widths of several nanometers. Ohshima 
[19] used a unit cell model to study the transverse 
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electroosmosis of salt-free solutions in a highly 
porous, fibrous matrix of parallel soft circular 
cylinders and disclosed that the electroosmotic 
mobility does not depend on the surface charge 
density, if it is higher than a critical value, due to 
the effect of counterion condensation. Chang et al. 
[20] examined the electroosmosis of some salt-free 
solutions in narrow circular channels theoretically 
and experimentally in the absence of the Debye 
screening effect and showed that the electroosmotic 
velocity grows with the channel radius. Chang 
[21-23] analyzed the transient electroosmosis of a 
salt-free solution in circular and slit microchannels 
and demonstrated that, due to the effect of 
counterion condensation, the rate of growth in the 
electroosmotic mobility with an increase in the 
surface charge density is substantially suppressed. 
Bandopadhyay and Chakraborty [24] theoretically 
studied the electroosmosis of counterion-only 
solutions in slit nanochannels and showed that the 
electroosmotic mobility is an increasing function 
of the surface charge density and ionic size. 
Recently, the axial electrokinetic flow and electric 
conduction of salt-free solutions in a fibrous 
porous matrix [25] and a circular tube [26] have 
been analyzed, and the results revealed that, when 
the porosity and surface charge density are high, 
the increases of the surface potential and 
electroosmotic mobility with the surface charge 
density are considerably suppressed owing to the 
counterion condensation effect.  
In this article, the electrokinetic flow of salt-free 
solutions in a planar slit microchannel or 
nanochannel driven by a tangentially imposed 
electric field and/or pressure gradient was 
analytically studied. The surface charge densities 
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(or relative surface potentials) of the slit walls can 
be arbitrary and unequal. Explicit formulas for the 
fluid velocity profile, average electroosmotic 
velocity, and average electric conductivity in the 
slit were obtained. Our results of salt-free 
solutions in a slit will be compared with those of 
salt-containing solutions and in a circular tube.  
 
2. Analysis  
We consider the electrokinetic flow of a salt-free 
solution in a slit microchannel or nanochannel 
between two large parallel plane walls at separation 
2h with constant surface charge densities σ (at y = h) 
and βσ (at y = –h) caused by a constant pressure 
gradient and a constant electric field, both are 
tangentially applied, as shown in Fig. 1. The surface 
charges of the slit walls and counterions (sole 
ionic species) in the solution are generated by a 
dissociation reaction taking place at the ionogenic 
groups uniformly distributed over each wall and 
0 ≤ β ≤ 1 is set without loss of generality. Evidently, 
the concentration of the counterions is a function 
of the lateral coordinate y (normal to the walls) 
and does not vary with the axial coordinate z (in 
the direction of fluid flow). Note that σ = 2hZenav / 
(1+β) due to the electric neutrality, where e is 
the elementary charge, –Z is the valence of the 
counterions, and nav is the average counterionic 
concentration in the salt-free solution in the slit. 

2.1. Electric potential  
The profiles of the equilibrium electric potential 
ψ(y) and counterionic concentration n(y) on a cross 
section of the slit needed to determine the fluid 
velocity distribution of the electrokinetic flow are 
governed by Poisson’s equation,  

Fig. 1. Geometrical sketch for the electrokinetic flow in a charged slit. 
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where mexp( / 2) / 2hλ κ ψ=  is an integration 
constant, m m( ) 0yψ ψ= ≤  is the minimum of the 
dimensionless potential profile ( )yψ , and – h ≤ 
ym ≤ 0 with 0 ≤ β ≤ 1. For specified values of σ  
and β, the values of λ and ym / h can be obtained 
numerically from the simultaneous algebraic 
equations resulting from the substitution of Eq. 
(6) into Eqs. (4) and (5),  

2 tanλ θ σ+ = ,                                   (7) 

2 tanλ θ βσ− = ,                                   (8) 

where  

m(1 )y
h

θ λ± = m .                                                (9) 

With the solution of ( )yψ  in Eq. (6), the 
dimensionless concentration distribution n(y) / n(0) 
of the counterions can be determined using Eq. 
(2). Substituting (0) 0ψ =  into Eq. (6), one obtains 

m2 sec( )yh
h

κ λ λ= ,                                (10)
 

which again implies that κh depends on σ  and β.  

From Eq. (6), the relative surface potentials of the 
two slit walls can be expressed individually as  

2
m( ) ln seckTh

Ze
ζ ψ ψ θ± ±= ± − = ,              (11) 

and the dimensionless potentials /Ze kTζ ±  are 
positive functions of β and σ  or κh increasing 
from zero at 0hσ κ= =  with ζ ζ− +≤ . Note that, 
for a given value of σ , /Ze kTζ +  increases with a 
decrease in β, while /Ze kTζ −  decreases with a 
decrease in β.  

When ψ  is less than the order of unity, the 
Debye-Hückel approximation applies and Eq. (3) 
can be linearized as  

2
2

2

d (1 )
dy
ψ κ ψ= + .                                               (12) 

The solution to Eqs. (12), (4), and (5) can be 
obtained explicitly as  

2

2

d 1 ( )
d

Zen y
y
ψ

ε
= ,                                                (1)

 
where ε is the dielectric permittivity of the fluid. 
The Boltzmann equation also provides a relation 
between the profiles ψ(y) and n(y),  

( ) (0)en y n ψ= ,                                                   (2) 

where ( ) /y Ze kTψ ψ= , with k and T being the 
Boltzmann constant and absolute temperature, 
respectively, is the dimensionless potential profile, 
y = 0 denotes the location of the midplane between 
the slit walls, and ψ(0) = 0 is set in this equation.  
Substituting Eq. (2) into Eq. (1), one obtains the 
Poisson-Boltzmann equation,  

2
2

2

d e
dy

ψψ κ= ,                                                 (3) 

where 1/2[ (0) / ]Ze n kTκ ε=  is the Debye 
screening parameter. The boundary conditions for 
ψ  at the slit walls are  

y h= :    
  

d
dy h
ψ σ

= ,                     (4) 

y h= − :  
  

d
dy h
ψ σβ= − ,                     (5) 

where 2
av/ 2( ) / (1 ) (0)hZe kT h n nσ σ ε κ β= = +  is the 

dimensionless surface charge density and Eqs. (4) 
and (5) are the Gauss conditions. Note that the 
dimensionless electrokinetic parameter κh depends 
upon σ  (which is positive, since σ and Z have the 
same sign) and β (the square of κh is equivalent to 
the dimensionless average surface charge density 
of the slit walls), unlike the case of salt-containing 
solutions where κh is essentially independent 
of σ  and β. Also, the ratio nav / n(0) can be 
determined in terms of σ  and β from an integration 
of n(y) with respect to y in the whole range using 
Eq. (2).  
An analytical solution to Eqs. (3)-(5) is [23]  

2
m m( ) ln sec [ ( )]y y y

h
λψ ψ= + − ,     (6)

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

layers (with the characteristic thickness κ-1, which 
is large) in the slit containing a salt-free solution 
overlap noticeably with each other regardless of 
the finite value of σ .  

2.2. Fluid velocity  
The velocity distribution u(y) for the electrokinetic 
flow of a salt-free solution within a slit channel 
caused by the applied pressure gradient P and 
electric field E in the z direction is governed by 
the conservative equation of fluid momentum,  

2

2

d ( )
d

u ZeEn y P
y

η = − ,                                      (18) 

where η is the fluid viscosity and Zen(y) is the 
local space charge density. The boundary conditions 
for u at the no-slip slit walls are  

y = ±h:   u = 0.                                 (19) 

With the substitution of Eq. (1) for n(y), Eqs. (18) 
and (19) can be analytically solved as  

 

 

Equation (20) with P = 0 gives the electroosmotic 
velocity distribution u(e)(y) in the slit and <u(e)> 
=L12E is the average electroosmotic velocity.  
When the Debye-Hückel approximation applies, 

( )yψ  is given by Eq. (13) and Eq. (23) can be 
analytically calculated to yield  

2

12 2

(1 ) e 1 1( )
2 e 1

h

h

kTL
Ze h h

κ

κ

ε σ β
ηκ κ
+ +

= − −
− .                 (24)

 
2.3. Electric conductivity  
The electric current density distribution in the 
charged slit filled with a salt-free solution in the 
direction of the electrokinetic flow is  

( ) ( ) ( ) ( )i y EΛ y Zen y u y= − ,                         (25) 

 

 

 

Both Eq. (6) and Eq. (13) satisfy the requirement 
of 0=ψ  in the limiting case of 0=σ .  

For the special case of β = 1 (both walls of the slit are 
equally charged, ψ(y) and n(y) are symmetric about 
y = 0, and mm 0y ψ= = ), Eqs. (6)-(10) reduce to  

2( ) ln sec ( )yy
h

ψ λ= ,                                (14) 

/ 2 π / 2hθ θ λ κ+ −= = = < ,                  (15) 

2 tanλ λ σ= ,                                               (16)

and Eq. (13) becomes  

cosh( )( ) 1
sinh( )

yy
h h
σ κψ
κ κ

= − + .                   (17) 

Both Eq. (14) and Eq. (17) indicate that 0ψ ≥  
(viz., ψ and σ have the same sign) everywhere, 
and Eq. (15) indicates that the two electric double 
 
 
 
 

where ψ(y) was given by Eq. (6) or (13). For the 
special case of β = 1(the slit walls are equally 
charged), u(y) is symmetric about y = 0.  
The average fluid velocity over a cross section of 
the planar slit can be defined as  

11 12
1 ( )d
2

h

h
u u y y L P L E

h −
< > = = +∫ ,   (21) 

where L11 and L12 are two Onsager transport 
coefficients [27, 28]. The substitution of Eq. (20) 
into Eq. (21) leads to  

2

11 3
hL
η

= ,                                              (22) 

12
1[ ( ) ( ) ( )d ]

2
h

h
L h h y y

h
ε ψ ψ ψ
η −

= − + − − ∫ .   (23)
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4 1 2 ( ) 2 ( )( ) 1 (e 1) [(e )e (1 e )e ]h h h y h h yy
h

κ κ κ κ κσψ β β
κ

− + −= − + − + + + .       (13)

2 21{ ( ) ( ) ( )[ ( ) ( )]} ( )
2 2

E Pu h y h y h h h y
h

ε ψ ψ ψ ψ
η η

= − − − − − − + − ,   (20) 
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21 22 i L P L E< > = + ,                                       (27)

where L21 (equal to L12 in Eq. (21) from the Onsager 
reciprocity principle) and L22 are the other two 
transport coefficients [28, 29]. Substituting Eqs. 
(1) and (20) for n(y) and u(y), respectively, into 
Eqs. (25) and (27), we obtain the average electric 
conductivity in the absence of the applied pressure 
gradient as  
 
 
 
 

representing the contribution from the 
electroosmosis, and  

m

2 (tan tan )
(0) 2

eΛJ
Λ

ψ

θ θ
λ + −

< >
= = + .                     (31) 

Evidently, both J1 and J2 are positive, and L22 = Λ = 0 
if 0=σ .  

When the Debye-Hückel approximation applies, ( )yψ  
is given by Eq. (13) and Eqs. (30) and (31) reduce to 
 
 
 
 
 

declines monotonically with a decrease in the 
magnitude of y / h  from a positive value Zeζ± / kT 
(where ζ- = ζ+) at y / h = ±1 (the slit walls) to zero 
at y / h = 0 (the midplane between the slit walls) 
for a given value of σ  and rises monotonically 
with an increase in σ  (or κh or Zeζ± / kT) from 
zero at 0=σ  (or κh = 0 or Zeζ± / kT = 0) for a 
given value of y / h. This outcome reflects the fact 
that the counterionic concentration grows with an 
increase in the magnitude of y / h, which is more 
significant when the surface charge density of the 
walls is higher.  
For any case of 0 ≤ β < 1 (the slit walls are 
unequally charged), as shown in Fig. 3, the value 
of ψ  first declines with a decrease in y / h  from a 

where the local electric conductivity of the 
solution at rest is  

2 21( ) (0)eΛ y Z e Dn
kT

ψ= ,                  (26) 

and D is the diffusivity of the counterions.  
The average electric current density over a cross 
section of the slit can be expressed as  
 
 
 
 

The substitution of Eqs. (6) and (26) into Eq. (28) 
results in  

2
22 1 2(0)[ ( ) ]kTL Λ J J

D Ze
ε
η

= + ,                     (29) 

where  

2
1 2

sec1 [2 (tan tan 2 ) (ln ) ]
( ) sec

J
h

θλ θ θ λ
κ θ

+
+ −

−

= + − −
,       

                                                                          (30) 

 
 
 
 
 

2
sinh( )hJ

h
κ

κ
= .                                               (33) 

 
3. Results and discussion  

3.1. Electric potential  
In Figs. 2 and 3, the dimensionless equilibrium 
electric potential ψ  in a charged planar slit filled 
with a salt-free solution given by Eqs. (6)-(9) is 
plotted versus the relative position y / h for some 
values of the dimensionless surface charge density 
σ  and ratio of surface charge densities of the two 
walls β. For the case of β = 1 (the two slit walls 
are equally charged, ψ(y) is symmetric about y = 0, 
and m 0ψ = ), as shown in Fig. 2, the value of ψ  
 

2 2
2 2

22 2

d   ( ) d [ ( ) ( )]
2 d 4

h

h
L Λ y h h

h y h
ε ψ ε ψ ψ
η η−

= < > + − − −∫ .                        (28)  

24
2 2 2 2 2

1 4 2 4

e {3(1 ) 4(1 )( ) 4[(1 ) 2 ( ) ]cosh(2 )
2(e 1) ( )

h

hJ h h h
h

κ

κ

σ β β κ β β κ κ
κ

−
= − + + − − −

−  

     
2 2(1 ) cosh(4 ) [4 sinh(2 ) (1 ) sinh(4 )]}h h h hβ κ κ β κ β κ+ − − + + ,                     (32)  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56 Yong J. Lin & Huan J. Keh 

   
  

 

Fig. 3. The dimensionless electric potential ψ  in a slit versus the relative coordinate y / h for the cases of 10σ =

(solid curves) and 2σ =  (dashed curves) with various values of β.  

Fig. 2. The dimensionless electric potential ψ  in a slit versus the relative coordinate y / h for the 
case of β  = 1 with various values of σ .  
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the Debye-Hückel approximate solution of the 
electric potential profile ( )yψ  in a slit filled with 
a salt-free solution are plotted versus the 
dimensionless surface charge density σ for 
several values of the surface charge density ratio 
β. As expected, both Zeζ+ / kT  and Zeζ- / kT  are 
increasing functions of σ  (or κh) from zero at 

0=σ for a given value of β, and Zeζ- / kT  
declines with a decrease in β to zero at β  = 0, 
while Zeζ+ / kT  rises with a decrease in β, for a 
given value of σ . When 2≤σ , Zeζ- / kT and Zeζ+ 
/ kT are almost proportional to σ  and their results 
obtained using Eq. (13) are in good agreement with 
those using Eqs. (6)-(9). When 2>σ , the growths 
of Zeζ+ / kT  and Zeζ- / kT with increasing  σ  are 
noticeably suppressed due to strong electrostatic 
screening with counterion condensation near the 
slit walls. For a salt-free solution in a circular tube 
with a fixed surface charge density [26], its 
relative surface potential is smaller than our result 
in a corresponding slit with β  = 1 provided that 
the slit thickness 2h equals the tube diameter.  

positive value at y / h = 1 (the higher-charged 
wall, to which most counterions are attracted due 
to the Coulomb force), becomes negative (where 
ψ and σ have opposite signs) as y / h  is smaller 
than zero, reaches a minimum mψ  at y / h  = ym / h 
< 0, and then rises with a further decrease in y / h  
till y / h  = –1 (the lower-charged wall) for a 
constant value of σ . The value of ym / h drops with a 
decrease in β  from zero at β = 1  to –1 at β = 0. 
The value of ψ  at y / h  = –1  can be positive (but 
no greater than that at y / h = 1) or negative, 
depending on the values of σ  and β. For specified 
values of y / h  and σ , ψ  rises with a decrease in 
β if y / h > 0 and declines with a decrease in β if 
y / h > 0. In general, the magnitude of ψ  grows with 
an increase in σ  from zero at 0=σ  for fixed 
values of β  and y / h (with exceptions as y / h < 0).  
In Figs. 4 and 5, the dimensionless relative 
surface potentials Zeζ+ / kT  and Zeζ- / kT of the 
higher-charged and lower-charged walls, 
respectively, calculated from Eq. (11) using both 
Eqs. (6)-(9) for the exact solution and Eq. (13) for 
 

Fig. 4. The dimensionless relative surface potential Zeζ+ / kT  in a slit versus the dimensionless 
surface charge density σ  for several values of β. Solid lines represent the solution (6) of the full 
Poisson-Boltzmann equation; dashed lines the solution (13) of the linearized equation. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The dimensionless relative surface potential Zeζ- / kT  in a slit versus the dimensionless surface 
charge density σ  for various values of β. Solid lines represent the solution (6) of the full Poisson-Boltzmann 
equation; dashed lines the solution (13) of the linearized equation.  
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in σ  for a given value of y / h, like that appearing 
in a salt-containing solution and consistent with 
experimental results of a salt-free solution in a 
circular tube [20]. Note that (e) /u Eη εζ±−  is finite 
(with ζ± = 0 and u(e) = 0) in the limit of 0=σ .  

For any case of 0 ≤ β < 1 (the walls are unequally 
charged), as shown in Fig. 7, the value of 

(e) /u Eη εζ+−  first upsurges with a decrease in y / h 
from zero at y / h = 1 (the higher-charged wall), 
reaches a maximum at y / h = yM / h > 0, and then 
decays with a further decrease in y / h back to zero 
at y / h = –1 (the lower-charged wall) for a given 
value of σ . The value of yM / h rises with a 
decrease in β from zero at β  = 1 for a given value 
of σ  and with an increase in σ  from zero at 

0=σ  for a given value of β. Again, (e) /u Eη εζ+−  
increases with an increase in σ  from zero at 

0=σ  for constant values of y / h and β. For fixed 
values of y / h and σ , (e) /u Eη εζ+−  declines with a 
decrease in β since less counterions are involved 
in their interaction with the applied electric field 
to produce the electroosmotic flow.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. Electroosmotic velocity  
The results of the normalized electroosmotic 
velocity (e) /u Eη εζ+−  (which is positive) of a salt-
free fluid in a charged slit calculated from Eq. 
(20) with ψ(y) given by Eqs. (6)-(9) and P = 0  are 
plotted versus the relative coordinate y / h  in Figs. 
6 and 7 for several values of the dimensionless 
surface charge density σ  and ratio of surface 
charge densities of the two walls β. For the case of 
β  = 1 (the two walls are equally charged and 
u(e)(y) is symmetric about y = 0), as shown in Fig. 6, 
this fluid velocity upsurges monotonically with a 
decrease in the magnitude of y / h from zero at 
y / h = ± 1 (the no-slip walls) to unity at y / h  = 0 
(the midplane) for any given value of σ  (or κh or 
Zeζ± / kT). This outcome deviates from the 
electroosmosis of a corresponding salt-containing 
solution (in which κh is essentially independent of 

σ ), where (e) / 1u Eη εζ±− =  (the Helmholtz-
Smoluchowski result) at y / h  = 0  occurs only for 
the case of κh →∞ [1, 3]. On the other hand, 

(e) /u Eη εζ±−  rises monotonically with an increase 
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Fig. 7. The normalized electroosmotic velocity (e) /u Eη εζ+−  in a slit versus the relative coordinate y / h for 

the cases of 50σ =  (solid curves) and 1σ =  (dashed curves) with various values of β . 

Fig. 6. The normalized electroosmotic velocity (e) /u Eη εζ±−  in a slit versus the relative 
coordinate y / h for the case of β  = 1 with several values of σ . 
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corresponding slit with β = 1 and thickness 2h 
equal to the tube diameter.  

3.3. Electric conductivity  
The dimensionless electric conductivity 

2
22( / ) ( )hZe kT L Λη ε − < >  [ 2

1( )h Jκ= ] brought by 
the electroosmotic flow in the charged slit filled 
with a salt-free solution is plotted versus the 
dimensionless surface charge density σ  in Fig. 9 
for various values of the ratio of surface charge 
densities of the two walls β calculated from the 
exact solution in Eq. (30) and approximate solution 
in Eq. (32). Analogous to the dimensionless 
relative surface potentials Zeζ± / kT  in Figs. 4 and 
5 and average electroosmotic velocity –ηZeL12 / 
εkT in Fig. 8, this conductivity drops with a 
decrease in β for a given value of σ , and the 
agreement of the approximate and exact solutions 
is good as 2≤σ . Like the electroosmosis of a salt-
free solution in a circular tube [26], this 
conductivity increases monotonically with an 
increase in σ  without being suppressed by the 
 effect of counterion condensation. The electric
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 8, the dimensionless average electroosmotic 
velocity kTZeL εη /12−  of a salt-free fluid in a 
charged slit calculated using the exact solution in 
Eqs. (6)-(9) and (23) as well as the approximate 
solution in Eq. (24) is plotted versus σ  for several 
values of β. Like the dimensionless relative 
surface potentials Zeζ± / kT shown in Figs. 4 and 
5, the agreement of the approximate and exact 
solutions of kTZeL εη /12−  are good as 2≤σ . 
Also like the normalized electroosmotic velocity 
profile (e) /u Eη εζ+− , this average velocity rises 
monotonically with an increase in σ  (because more 
counterions are involved with the applied electric 
field to yield the electroosmotic flow) and drops 
with a decrease in β, keeping the other parameter 
unchanged. Again, kTZeL εη /12−  is approximately 
proportional to σ  as 2≤σ  and its increase with 
σ  is substantially suppressed due to the counterion 
condensation effect as 2>σ . For a salt-free 
solution in a circular tube with a fixed surface 
charge density [26], its average electroosmotic 
velocity is smaller than our result in a 
 

Fig. 8. The dimensionless average electroosmotic velocity kTZeL εη /12−  in a slit versus the dimensionless
surface charge density σ  for several values of β. The solid and dashed curves represent results 
calculated using Eq. (23) with Eq. (6) and Eq. (24), respectively.  
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Fig. 9. The dimensionless electric conductivity 2
22( / ) ( )hZe kT L Λη ε − < >  in a slit due to electroosmotic 

flow versus the dimensionless surface charge density σ  for several values of β. The solid and 
dashed curves represent results calculated using Eqs. (30) and (32), respectively.  

Fig. 10. The dimensionless overall electric conductivity 2
22( / )hZe kT Lη ε  of the aqueous solution of 

K+ or Cl- in a slit versus the dimensionless surface charge density σ  for several values of β. The 
solid and dashed curves represent results calculated using Eq. (29) together with Eqs. (30) and 
(31) and Eqs. (32) and (33), respectively.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

62 Yong J. Lin & Huan J. Keh 

with an increase in σ  (or κh, the ratio of the half 
thickness of the slit h to the Debye screening 
length κ-1) for a given value of β. But, the rises of 

/Ze kTζ±  and kTZeL εη /12−  with increasing σ  
are suppressed noticeably when σ  is high due to 
the counterion condensation effect. For a salt-free 
solution in a circular tube with a fixed surface 
charge density, its relative surface potential and 
average electroosmotic velocity are smaller but its 
average electric conductivity is greater than our 
results in a corresponding slit with β = 1 and half 
thickness h equal to the tube radius.  
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