Home | My Profile | Contact Us
Research Trends Products  |   order gateway  |   author gateway  |   editor gateway  
ID:
Password:
Register | Forgot Password

Author Resources
 Author Gateway
 Article submission guidelines

Editor Resources
 Editor/Referee Gateway

Agents/Distributors
 Regional Subscription Agents/Distributors
 
Trends in Cancer Research   Volumes    Volume 6 
Abstract
Development of a DNA-based vaccine for treatment of intracerebral breast cancer
Terry Lichtor
Pages: 15 - 24
Number of pages: 10
Trends in Cancer Research
Volume 6 

Copyright © 2010 Research Trends. All rights reserved

ABSTRACT
 
Antigenic differences between normal and malignant cells of the cancer patient form the rationale for clinical immunotherapeutic strategies.  Because the antigenic phenotype of neoplastic cells varies widely among different cells within the same malignant cell-population, immunization with a vaccine that stimulates immunity to the broad array of tumor antigens expressed by the cancer cells is likely to be more efficacious than immunization with a vaccine for a single antigen.  A vaccine prepared by transfer of DNA from the tumor into a highly immunogenic cell line can encompass the array of tumor antigens that characterize the patient’s neoplasm.  Poorly immunogenic tumor antigens, characteristic of malignant cells, can become strongly antigenic if they are expressed by highly immunogenic cells. A DNA-based vaccine was prepared by transfer of genomic DNA from a breast cancer that arose spontaneously in a C3H/He mouse into a highly immunogenic mouse fibroblast cell line, where genes specifying tumor-antigens were expressed.  The fibroblasts were modified in advance of DNA-transfer to secrete an immune augmenting cytokine and to express allogeneic MHC class I-determinants. In an animal model of breast cancer metastatic to the brain, introduction of the vaccine directly into the tumor bed stimulated a systemic cellular anti-tumor immune response measured by two independent in vitro assays and prolonged the lives of the tumor-bearing mice.  Furthermore, using antibodies against the various T-cell subsets, it was determined that the systemic cellular anti-tumor immunity was mediated by CD8+, CD4+ and NK/LAK cells.  In addition an enrichment strategy has also been developed to increase the proportion of immunotherapeutic cells in the vaccine which has resulted in the development of enhanced anti-tumor immunity. Finally regulatory T cells (CD4+CD25+Fox p3+-positive) were found to be relatively deficient in the spleen cells from the tumor-bearing mice injected intracerebrally with the enriched vaccine.  The application of DNA-based genomic vaccines for the treatment of breast cancer metastatic to the brain is being explored.
Buy this Article


 
search


E-Commerce
Buy this article
Buy this volume
Subscribe to this title
Shopping Cart

Quick Links
Login
Search Products
Browse in Alphabetical Order : Journals
Series/Books
Browse by Subject Classification : Journals
Series/Books

Miscellaneous
Ordering Information Ordering Information
Downloadable forms Downloadable Forms