Home | My Profile | Contact Us
Research Trends Products  |   order gateway  |   author gateway  |   editor gateway  
Register | Forgot Password

Author Resources
 Author Gateway
 Article submission guidelines

Editor Resources
 Editor/Referee Gateway

 Regional Subscription Agents/Distributors
Current Topics in Crystal Growth Research   Volumes    Volume 7 
Modeling flows in protein crystal growth
D. N. Riahi
Pages: 71 - 77
Number of pages: 7
Current Topics in Crystal Growth Research
Volume 7 

Copyright © 2004 Research Trends. All rights reserved


This is a review article on modeling convective flows due to either buoyancy force or surface tension gradient force during protein crystallization that have been studied in the past. The modeling and computational studies of such flows have provided useful results about the effects of the undesirable convection, which need to be minimized in order to produce protein crystal with higher quality and better order in the structure. Ramachandran et al. [1] developed analytical and numerical models to describe the flows and transport associated with the protein crystal growth. Lee and Chernov [2] carried out analytical and numerical studies of convective and diffusional mass transport to an isolated protein crystal growing from solution, with slow linear interface kinetics. Very recent modeling and computational studies by Bhattacharjee and Riahi [3,4] of compositional convection during protein crystallization and under the external constraint of rotation indicated beneficial effects of rotation in reducing the effect of convection under certain range of the parameters values. The results by these authors also provided conditions under which convective flow transport during the protein crystallization can approach the diffusion limited transport, which is desirable for the production of higher quality protein crystals.
Buy this Article


Buy this article
Buy this volume
Subscribe to this title
Shopping Cart

Quick Links
Search Products
Browse in Alphabetical Order : Journals
Browse by Subject Classification : Journals

Ordering Information Ordering Information
Downloadable forms Downloadable Forms