
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To invade, or not to invade – that is the question for  
brain-to-computer interfacing 
 

ABSTRACT 
To not invade the brain by using external devices 
to provide brain-to-computer interfacing is obviously 
desirable. But will it be efficacious? Invasive 
techniques provide higher resolution and hence 
provide more precise control, but non-invasive 
devices that utilize machine learning may provide 
control that approaches the resolution and 
precision of invasive devices. The answer at this 
point in time appears to be that, for smooth 
movement and conversational speech, invasive 
devices are needed. For all other needs, non-
invasive techniques should suffice. 
 
KEYWORDS: brain, computer, P300, infrared, 
eye gaze, SSVEP, EEG, ECOG, single unit 
recording. 
 
1. Introduction 
The problem of deciding which brain to computer 
interface (BCI) technique should be developed 
is vexing. Certainly, it would be preferable not 
to invade the brain with electrocorticography 
(ECoG), or intracortical electrodes (ICE) because 
of the inherent risk. However, low-resolution 
devices will not provide smooth movement, for 
example, though they can provide some movement. 
The dividing line between invasive and non-
invasive techniques indicates that more and more 
efficacy is obtained by non-invasive devices despite 
their lower resolution. This is likely because 
of better signal decoding by using machine 
learning. 
The modalities are listed across Table 1. 

2. Modalities for communication 

2.1. Residual digit movements 
Residual digit movements are obviously achievable 
for paraplegics, but high quadriplegics and locked-in 
amyotrophic lateral sclerosis (ALS) subjects 
might be able to tap on a switch or keyboard to 
produce letters or activate icons that call for help, 
turn lights and music on or off, and so on. 

2.2. EMG signals 
Electromyography (EMG) signals may also be 
obtainable from quadriplegics and locked-in 
subjects, from the neck or face. EMG signals can 
trigger a switch that produces letters or activates 
icons on a computer. In combination with additional 
software such as E Z Keys+ [1] rapid rates of 
spelling and hence artificial speech in locked-in 
subjects is possible. However, the speech is slow 
and nowhere near conversational rate. Alternatively, 
the EMG signal can be used to control a cursor 
and hence the user can access the Internet. 

2.3. Eye gaze devices 
Eye gaze devices from LC Technologies Inc. [2] 
or Tobii Inc. [3] track the subject’s eye gaze 
and thus can control the computer, providing 
communication and Internet access. 

2.4. Near-infrared light 
Near-infrared light (fNIRS) can traverse the skull 
and penetrate about 1 cm into the cortex. It can 
detect changes in blood flow and hence differentiate 
between active and non-active brain areas. Previously 
it was considered slow but useful [4]. A more 
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recent advance involves the use of ultrasound 
imaging to detect anatomic and functional activity 
of the brain using a small hand-held wand. This 
system has been shown to detect changes in the 
brain that indicate intention to move and thus can be 
used as a communication device [5]. Also see 
‘Hybrid BCI’ section below which describes the 
combination of IR light with EEG. 

2.5. Slow waves 
Slow waves are detectable from the frontal cortex 
and can be controlled by the subject. Again, they 
are useful but as the name implies, slow [6]. 

2.6. P300 wave 
The surprise potential. It is recorded from the 
vertex and occurs when the subject views a letter 
he needs as part of a word he wants to spell. As 
the name implies, it occurs 300 ms from the onset 
of the event. In that way, the subject can spell words 
and produce speech at a non-conversational rate. 
The P300 occurs upon the subject’s reaction to the 
stimulus, not the stimulus itself [7]. It has also been 
used as a lie detector to provide legal evidence. 
Originally it was slow. Now it has been combined 
with a variety of stimuli [8] or a more rapid 
presentation of the stimuli [9] so that the 
Information transfer rate (ITR) was 5.04 bits per 
minute (bpm) in the latter study. The complexities of 
these variations are very well reviewed here [10].  

2.7. Motor imagery 
Motor imagery (MI) can also provide communication 
[11, 12]. Even movement can be controlled using 
motor imagery [13]. The subject imagines moving 
the right or left hand, for example, and the decoded 
EEG activity can accurately indicate which hand 
they intended to move and hence make a binary 
choice or move in a direction. 

2.8. Steady state visual evoked potential 
Steady state visual evoked potential (SSVEP) may 
be one of the fastest methods [14]. Essentially, the 
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icons or letters are targets that flicker at specific 
rates so that they can be detected using electrodes 
over the occipital lobe. Flickering can reduce the 
subject’s compliance, so Nakanishi et al. [14] 
developed a flicker-free system that not only obviated 
that problem but also provided a high ITR rate of 
91.2 ± 27.6 bpm (bits per minute) averaged over 
18 subjects. Accuracy was 94 ± 2.44%. This 
surpassed the mean ITR of 56.4 for all other BCI 
systems, whether internal or external systems, to 
date, according to Nakanishi [14]. However, this 
was not as high as the 267 achieved by Gao Rong 
as quoted in their paper (unreferenced). This latter 
level was achieved using a much more complex 
system, unlikely to be available to subjects. 

2.9. Hybrid BCI 
EEG has been combined with ECoG, fNIRS, MI 
and P300. Motor imagery has been combined with 
SSVEP. Despite all these combinations, the ITR 
does not come close to the ITR of the SSVEP [14, 
15]. Combination of EEG with fNIRS achieved an 
ITR of 4.70 bits per minute (bpm) and high 
accuracy of 82% when compared to either EEG or 
fNIRs alone [16]. Using a short trial length however, 
produced an ITR of 10 bpm for some subjects, 
with an average of 6.88 bpm. Also described in 
Shin et al., [16] is a hybrid EEG and fNIRS using 
motor imagery of both force and speed with 
higher accuracy (ITR is not given). 

2.10. Neural net decoding 
Neural net decoding combined with EEG, fNIR, 
and other modalities, may be the key to developing 
high-resolution signals from non-invasive techniques. 
Early studies show promise [17]. EEGNet, a software 
program, was used successfully to decode four 
techniques: P300 visual-evoked potentials, error-
related negativity responses, movement-related 
cortical potentials, and sensory motor rhythms. 
Improved accuracy was obtained [18-20]. Using 
neural net decoding to decode yes/no in Hindi and 

Table 1. List of non-invasive and invasive modalities used for BCI. 

 Non-
invasive        Invasive  

Modalities Digit 
movements EMG Eye 

gaze 
Infra-

red 
Slow 
waves P300 SSVEP EEG ECoG 

Intra 
cortical 

electrodes 
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improved control compared to EMG activity 
alone [25]. 
3.2. EEG 
An exoskeleton was driven by EEG from the 
motor cortex ipsilateral to the driven arm. This 
study involved 10 subjects with no controls, and 
produced a 6.2 point increase in the Action 
Research Arm Test with baseline of 13.4 [26]. 
Whether or not this is better than the EMG control 
described above is unknown. Another study 
looked at the difference between BCI-controlled 
robot and robot alone and found no difference 
until week 12 when the study had to end [27]. An 
intriguing on-going therapy is to record EEG while 
the subject imagined using the paralyzed arm, and 
use the EEG, activated by imagination, to drive an 
external muscle stimulator that activated the 
paralyzed muscles. The control study was to use 
the muscle stimulation system without the EEG 
activated by imagination. More rapid recovery of 
the paralyzed limb was demonstrated [28]. 
A thorough review of this area concludes that non-
invasive BCI assists in recovery from stroke [29].  

3.3. ECoG 
ECoG has been used to move a prosthetic hand 
into the supine or prone position with an accuracy 
of 79% (50% chance level) with digit movement 
accuracy of 68% (33.3% chance level with 4th and 
5th digits tied together) [30]. A similar study 
demonstrated accurate control of 92% (50% chance) 
for supine or prone positions, and digit classification 
accuracy of 76% (20% chance level) which is an 
improvement [31]. 

3.4. Intracortical recordings 
Intracortical recordings (ICR) of single units using 
a 96 channel Blackrock array in 2 quadriplegic 
 

English for locked-in subjects using silent speech 
produced an accuracy of 85% for decision between 
yes and no, and 92% for language [21]. ITR was 
not given. Many other techniques have been 
described using neural net computation and the 
future is bright for further development and better 
results. 

2.11. ECoG and intracortical recordings 
ECoG and intracortical recordings have been used 
to communicate. Ramsey and coworkers [22] used 
ECoG to communicate and later to decode speech. 
Other workers began using intracortical recordings 
in 1998 to communicate with and control a computer 
[23]. When it was realized that external devices 
could be just as efficacious, those invasive studies 
were not continued since they would be unethical. 
Intracortical local field potentials could also be used 
to control a computer [24]. 
The above discussion on communication is 
summarized in Table 2. 

2.12. Conclusion regarding communication  
No one is ethically justified any longer to invade 
the brain for communication when it can be done 
adequately, safely and expeditiously with non-
invasive external devices. 
 
3. Modalities for control of movement 

3.1. EMG 
First let’s divide movement into smooth movement 
or non-smooth, chunky movements. EMG can be 
used to provide movements in quadriplegics and 
in some almost locked-in ALS subjects. Residual 
EMG activity in quadriplegics can control an 
exoskeleton or functional electrical stimulation 
systems attached to the extremity [25]. Exoskeleton 
control by EMG and proprioceptive feedback provide 
 

Table 2. Summary of modalities used in communication. 

 Non-
invasive        Invasive  

Modalities Digit 
movement EMG Eye 

gaze 
Infra-

red 
Slow 
waves P300 SSVEP EEG ECoG 

Intra 
cortical 

electrodes 
Communicate Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Warranted? Yes Yes Yes Yes Yes Yes Yes Yes No No 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Control of speech 
The aim of a speech prosthesis is to provide speech 
at a near conversational rate that includes at least 
100 and expectantly several 100 words. Use of 
non-invasive modalities cannot in theory produce 
anything close to natural speech because their 
outputs are generally a click thus producing a 
single word either by spelling it out or by icon. 
Thus, natural, near conversational speech falls 
into the realm of invasive technologies. 

4.1. ECoG 
There is an excellent review as to the possibilities 
of using ECoG for speech [38]. Specific studies 
are not so optimistic. For example, using timing 
of neural signal modulation did not produce a 
clear result [39]. Another example: Neural decoding 
of single vowels during silent speech in a locked-
in subject produced a low accuracy of <50% [40]. 
The results also showed that high gamma was not 
useful but beta was the most useful frequency. 
Another study [41] decoded spectro-temporal features 
of audible speech producing a rank of .91 (baseline 
0.5, max rank = 1) but silent speech produced a 
lower rank of 0.55. A study using only a two-
syllable choice task achieved 98% accuracy using 
support vector machine decoding [42]. Decoding 
of single words resulted in an average accuracy of 
36% and for single phonemes an accuracy of 63% 
and the ITR was 33.6 words per minute [43]. A 
review discusses how to improve the electrode and 
the decoding process [44]. One study demonstrated 
that by recording single-unit activity from ICR 
simultaneously with local field potentials (LFPs) 
and ECoG using only a 7 x 13 mm electrode, from 
ventral speech cortex the accuracy was 59% [45]. 
This result was better than that obtained using one 
 

subjects demonstrated reach and grasp; One 
subject was implanted 5 years earlier and had only 
15% of units remaining but could slowly operate 
the robot arm to reach and grasp [32]. Another 
group [33] used two Blackrock arrays and had 
91.6% accuracy in reaching (6.2% chance level) 
in less time (112 versus 148 seconds). A third group 
used a surface functional electrical stimulation 
(FES) system controlled by single units acquired 
from a Blackrock array that generated digit 
movements and 6 different wrist movements in a 
locked-in individual [34]. A fourth group used 
Blackrock arrays to control an implanted FES 
system to control reach and grasp; 36 implanted 
electrodes resulted in 80 to 100% point-to-point 
accuracy and allowed self-paced drinking and 
eating with the subject’s own arm [35]. 
All these studies resulted in somewhat smooth 
movements compared to ECoG or other modalities 
but a direct comparison has not been possible. 
These intra cortical recording (ICR) results are 
intriguing indeed, but whether or not they will be 
surpassed by those of ECoG remains to be seen. 
One group of Blackrock Array users admits that 
the signals from the array are not stable [36] and 
this obviously limits their long-term use. Sensory 
return (including proprioception) to the brain is 
another obvious essential requisite for the production 
of smooth movements and this is being addressed 
[37]. The overall conclusion at this stage of 
development is that ICR is likely the optimal 
modality for smooth movement. It is possible that 
ECoG may, along with neural net decoding, exceed 
the capabilities of ICR. But that remains to be proven. 
The above discussion on movement is summarized in 
Table 3. 
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Table 3. Summary of modalities used in movement control. 

 Non-
invasive        Invasive  

Modalities Digit 
movement EMG Eye 

gaze 
Infra-

red 
Slow 
waves P300 SSVEP EEG ECoG 

ICR (Intra 
cortical 

recording) 
Some 

movement n/a Yes No No No Yes Yes Yes Yes Yes 

Smooth 
movement n/a No No No No No No No Possible Possible 
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The above discussion on speech is summarized in 
Table 4. 

4.3. Other issues that impact the choice 

Longevity of recordings 

Non-invasive modalities are preferred if efficacy 
is adequate. Clearly in the case of restoring speech, 
for example, they are not adequate. Invasive ECoG 
recordings have been tested over months but not 
years, so longevity cannot be assessed. ICR electrodes 
are notorious for not enduring beyond a few years 
with the Blackrock array; specifically 85% loss of 
single units occurs over three years [36]. However, 
the neurotrophic electrode has survived over a decade 
in a locked-in subject who died while the electrode 
was still active. Conditioning studies were performed 
at year nine, indicating that single unit recordings 
were functional and not arbitrary waveshapes [54]. 

Risk  

With non-invasive studies, there is essentially no 
risk. The risk with any invasive technique is high 
especially if there is any electrode lead or a pedestal 
that exits the scalp. This occurs with ECoG 
implants and the Blackrock array. Risk is lowered 
with the neurotrophic electrode and its implanted 
electronics where no wire exits through the scalp. 
Unfortunately, the number of channels is no more 
than 3, severely limiting its capabilities. 
 
5. Conclusion 
Non-invasive devices are preferred if efficacy can 
be obtained as is possible with communication. 
Combining non-invasive systems with neural net 
decoding is already advancing their capabilities. 
Combining neural net decoding with ECoG or 
with ICR has already been shown to improve 
decoding. Despite the risks of invasive recordings, 
ECoG and ICR may be essential for smooth
movement control and conversational speech only 
when combined with neural net decoding. 
 

 
 
 
 
 
 

modality. Another study using high-density ECoG 
electrodes demonstrated an improved accuracy of 
75% by limiting the word choice to only four 
words [46]. 
A different approach was taken by Chang and his 
group [47]. Instead of searching for word, phoneme 
or phrase representations over the cortex using 
ECoG, they focused on placing high-density ECoG 
electrodes over the ventral motor articulatory cortex 
with the aim of mapping the representation of the 
articulators, namely the tongue, lips, jaw and larynx. 
Using this technique combined with a tracking 
system it was possible to directly measure the vocal 
tract and relate its movements to cortical activity 
[48]. Furthermore, recordings in the superior temporal 
gyrus demonstrated a posterior area that identifies 
speech onset and an anterior area that identifies 
sustained speech responses [49]. These results 
suggest a method of identifying parsing of speech. 

4.2. ICR 
Recording single-unit activity in the auditory cortex 
while listening to speech allowed identification of 
the speech [50]. In a separate study, recording from 
speech motor cortex in a locked-in subject provided 
decoding of 23 of 39 English phonemes [51]. In 
addition, linear discriminant analysis decoding 
was used to drive the computer cursor over a 
formant frequency plane from one phoneme to 
another over seconds. This technique was too 
slow to be useful in restoring near conversational 
speech. However, phoneme sounds were classified 
from the single-unit results [52]. In another study, 
involving ICR in an intact human, short phrases 
were decoded offline using an artificial neural net 
for both audible and silent speech with correlation 
values between 0.9 and 0.8 [53]. 
The results with ECoG are very encouraging as 
are those with ICR of single units. More studies 
are needed in both areas to decide the optimal 
modality. 

Table 4. Summary of modalities used in speech. 

 Non-
invasive        Invasive  

Modalities Digit 
movement EMG Eye 

gaze 
Infra-

red 
Slow 
waves P300 SSVEP EEG ECoG 

ICR (Intra 
cortical 

recording) 
Speech n/a No No No No No No No Yes Yes 
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GLOSSARY 
‘Digit movement’ refers to any residual digit 
movement that the subject can use. 
‘EMG’: Electromyography. 
‘Eye gaze technology’ is exemplified by devices 
that detect eye gaze position and translate that into 
commands. 
‘Near infra-red therapy’ refers to the use of near 
infra-red light that traverses the skull and activates 
the brain underneath. 
‘Slow waves’ refer to the detection of 1-3 Hz 
EEG activity that can be controlled by the subject 
to provide a communication pathway.  
‘P300’ refers to a technique of detecting a surprise 
potential when the subject views a letter of 
interest even for a few milliseconds. 
‘SSVEP’ refers to steady state visual evoked 
potentials that can be controlled by the subject 
either by looking at the flickering areas or gazing 
off the flickering area (target or movement is 
detected due to the changes in the pattern of EEG 
recording over the occipital lobe). 
‘EEG’: Electroencephalographic recording from 
the scalp.  
‘ECoG’: Electrocorticographic recording from the 
brain surface. 
‘ICR’: Intracortical recording from electrodes 
placed within the cortex. 
‘BPM’ : bits per minute 
‘ITR’ : information transfer rate 
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