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Effects of chemical reaction, viscous dissipation and pressure 
work on MHD free convection flow in a porous medium  

ABSTRACT 
The effects of chemical reaction, viscous 
dissipation and pressure work are included in 
a three-parameter perturbation analysis in 
magnetohydrodynamic free convection flows of 
Newtonian fluid-saturated porous medium. The 
Rosseland approximation is used to describe the 
radiative heat flux in the energy equation. Four 
different cases of flows have been studied namely 
an isothermal surface, a uniform surface heat flux, 
a plane plume and flow generated from a 
horizontal line energy source along a vertical 
adiabatic surface. Numerical results are presented 
for the perturbation analysis for the four boundary 
conditions. The obtained results are compared and 
a representative set is displayed graphically to 
illustrate the influence of the parameters on the 
velocity, temperature and concentration.  
 
KEYWORDS: MHD, chemical reaction, 
perturbation analysis, viscous dissipation, pressure 
work, porous medium 
 
1. INTRODUCTION 
Natural convection in fluid saturated in porous 
media arises in a large number of natural sciences 
as well as several branches of technology. These 
include geophysics, soil mechanics, metal casting, 
ceramic engineering, the technology of paper and 
insulating materials. Combined heat and mass 
transfer problems with chemical reaction are of 
importance in many processes and have, therefore, 
received a considerable amount of attention in
 

recent years. In processes such as drying, 
evaporation at the surface of a water body, energy 
transfer in a wet cooling tower and the flow in a 
desert cooler, heat and mass transfer processes 
occur simultaneously. Therefore, the porous 
media play a vital role in many engineering 
applications such as thermal insulation of 
buildings, energy recovery of petroleum 
resources, chemical reactors and nuclear waste 
disposals. Cheng and Minkowycz [1] presented 
an analysis for the natural convection flows about 
a heated impermeable surface embedded in fluid-
saturated porous media, to model the heating of 
groundwater in an aquifer by a dike. Kaviany and 
Mittal [2] considered the first order boundary 
layer approach both for vertical and horizontal 
natural convection flows using singular 
perturbation analysis. Ali, et al. [3] studied 
the interaction of natural convection with the 
thermal radiation in a laminar boundary layer flow 
over an isothermal, horizontal flat plate. Sahar, 
et al. [4] studied radiative effect on natural 
convection flows in porous media using the 
effects of both first and second –order resistances 
due to the solid matrix on some natural 
convection flows in fluid–saturated porous media. 
Soundalgekar and Takhar [5] studied radiation 
effects on free convection flow of a gas past a 
semi-infinite flat plate. Hossain, et al. [6]  
determined the effect of radiation on natural 
convection flow of an optically thick viscous 
incompressible flow past a heated vertical porous 
plate with a uniform surface temperature and a
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past a vertical plate and incorporate the usual
Boussinesq and boundary layer assumptions.
The flow is taken to be in the direction of x-axis, 
and y-axis normal to it. The temperature of the 
quiescent ambient fluid, ∞T  at large values of y, is 
taken to be constant. The fluid properties are 
assumed to be constant and the magnetic field is 
normal to the direction of flow. The governing 
equations for the problem under consideration can 
be written as:           
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where, T  is the temperature, C  is the 
concentration, σ  is the electrical conductivity of 
the fluid, 0B  is the strength of  magnetic field, ρ  
is the density, µ  is dynamic viscosity, 1k  is the
permeability of porous medium, Pc Ck , and g  are 
the rate of chemical reaction, specific heat of the 
fluid and acceleration due to gravity respectively. 

Tβ is the thermal expansion coefficient, cβ  is the 
concentration expansion coefficient, D  is the 
mass diffusion coefficient, 0Q  is the heat 
generation constant, ∞C and ∞T are the free stream 
dimensional concentration and temperature, 
respectively, rq  is the  radiative heat flux., fT  is 
the film temperature. The fluid pressure consists 
of the hydrostatic and motion pressure:  

mh PPP += . 

uniform rate of suction where radiation is 
included by assuming the Rosseland diffusion 
approximation. Hossain and Rees [7] investigated 
free convection from isothermal inclined plates to 
horizontal plates. Yih [8] studied the effect of 
radiation on natural convection about a truncated 
cone. Hossain and Pop [9] analyzed the radiation 
effect on free convection flow along an inclined 
surface placed in a porous medium. At high 
temperatures thermal radiation can significantly 
affect the heat transfer and the temperature 
distribution in the boundary layer flow of 
participating fluid. Gorla [10], and Gorla and Pop 
[11] investigated the effects of radiation on mixed 
convection flow over vertical cylinders. Ibrahiem 
and Hady [12] studied mixed convection–
radiation interaction in boundary layer flow over a 
horizontal surface. Forced convection–radiation 
interaction heat transfer in boundary-layer over a 
flat plate embedded in a porous medium was 
analyzed by Mansour [13]. 
Yih [14] studied the radiation effect on free 
convection over a vertical cylinder embedded in 
porous media. EL-Hakim and Rashad [15] used 
Rosseland diffusion approximation in studying the 
effect of radiation on free convection from a 
vertical cylinder embedded in a fluid-saturated 
porous medium. Rashad [16] studied the radiative 
effect on heat transfer from an arbitrarily 
stretching surface with non-uniform surface 
temperature embedded in a porous medium.  
The present investigation is devoted to a study of 
the effects of chemical reaction on some natural 
convection flows of Newtonian fluid-saturated 
porous medium in the presence of radiation, 
viscous dissipation, magnetic field, permeability 
of porous media, pressure work and heat 
generation past a vertical surface. Numerical 
results are presented for four representative kinds 
of surface temperature variation, namely, an 
isothermal surface, a uniform heat flux surface, a 
plane plume and flow generated from a horizontal 
line energy source and a vertical adiabatic surface.
 
2. Analysis  
We consider a steady two-dimensional natural 
convection hydromagnetic flow of a viscous 
incompressible, electrically conducting fluid 
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here db,  and h  are linear function in x  and 

2
00

3 )(
ν

β ∞−
=

TTxg
Gr T

x
 is local Grashof number 

and ( )00 ∞−TT  is the downstream temperature 
differences (along the x axis). Expansions for the 
stream function ( ),, xf η temperature function 

( )x,ηθ  and concentration function ( )x,ηφ  are:  
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where the permeability of the porous medium, 
magnetic field, viscous dissipation, pressure work,  
chemical reaction and heat generation terms, are 
related as: 
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The choice of ( )xε  is the same as Gebhart [20] 
from the viscous dissipation effect. The quantities 
of 1( )xλ  and )(xλ  are due to the pressure work 
effect, permeability of porous medium, heat 
generation and chemical reaction effects. Note 
that 1( )xλ  and )(xλ are constant when .1=n  

)(xε , 1( )xλ  and )(xλ are treated as prescribable 
parameters. This has been done to study the effect 
of each parameter on the velocity, temperature 
and concentration fields. Greater accuracy for 
specific circumstances may be obtained by 
retaining higher order terms in (10)-(12). 
Substituting (10)-(12) into Eqs. (2), (4) and (8) 
with the generalization in (9), the equations for

0 0 0 1 1 1 2 2 2 3 3 3, , , , , , , , , , ,f f f fθ φ θ φ θ φ θ φ are determined 
for any value of n as:  
 
 
 
 
 
 
 

The motion pressure is considered small compared 
to hydrostatic pressure and is ignored [17, 18]. 
For the hydrostatic pressure we have: 
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Also the radiative heat flux term is simplified by 
using the Rosseland approximation (see Sparrow 
Cess [19]) as 
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where 0σ  and *k  are the Stefan-Boltzman constant 
and mean absorption coefficient, respectively. 
The obtained Taylor series expansion for 4T  
neglecting higher order terms:  

,34 434
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Using  Eqs. (5), (6) and (7) in energy equation (3) 
we obtain 
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the kinematic viscosity.  
The following transformation can be introduced:  

( ) ( ),, xbyyx =η  

( ) ),,()(, xfxhyx ηνψ =  

( ) ( ) ,
4

4
4

)(
44

4
1

4
1

2
00

3

⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
== ∞ xT GrTTxg

xxbxh
ν

β   

( ) ( ) ( ) ( ) ,,, 00
00

nsxxdTT
TT
TTx ==−

−
−

= ∞
∞

∞ηθ  

( ) ( ) ( ) ( ) ,,, 1100
0)0

nxsxdCC
CC
CCx ==−

−
−

= ∞
∞

∞ηφ

                                                                            (9)

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

68 Abdelraheem Mahmoud Aly et al.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

heat generation, pressure work and chemical 
reaction effects. The boundary conditions for the 
first-order terms are then found by imposing 
reasonable requirements on the velocity, temperature 
and the concentration functions ( ) ( ),,,, xxf ηθη  

( )x,ηφ  and their derivatives at 0=η  and as ∞→η :  

(a) Isothermal surface with horizontal leading 
edge 0=n  
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are buoyancy ratio and modified Grashof 
number, respectively. U is reference velocity. The 
boundary conditions for the zero-order equations 
are taken to be those that would arise in the 
absence of the radiation, viscous dissipation, and 
permeability of porous media, magnetic field,
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In the previous equations, the primes indicate 
differentiations with respect to η  only, the 
value of n in (9), ( ) ( ) nsxxdTT ==− ∞ 00  and 

( ) ( ) nxsxdCC 1100 ==− ∞  depends only on the 
zeroth order solution. For the isothermal condition 
we have 0=n  and, therefore 00 )( ∞− TT  is given. 
The values of n  for the other three flow 
conditions are determined by calculating the value 
of ),(0 xQ  the total heat convected in the flow at 
downstream location x, considering only the 
zeroth-terms. The energy equation (8) in the 
absence of viscous dissipation, radiation, pressure 
work and heat generation terms is integrated at a 
given x  to lead 
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This must increase linearly with x  for the 
uniform heat flux surface condition (b) and is 
independent of x  for the adiabatic flows, (c) and 
a plane plume flows, (d). Therefore, we have: 
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Even in the plume flow, the total convected 
energy does change downstream at ,0=x  
including the zeroth and first order terms, ( )xQ  
is, in general  
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(b) Uniform-flux surface with horizontal leading 
edge, 2.0=n  
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(c) Unbounded plane plume, rising from 
horizontal thermal source at 0=x , 6.0−=n  
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(d) An adiabatic surface with a concentrated heat 
source along the horizontal leading edge, 6.0−=n
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The wall shear stress may be written as  
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For the surface conditions in (a-d) above, the 
shear stress at the surface, retaining terms up to 
first-order, is given by  
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Also the surface heat flux, )(xqw  and the local 
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where k and H are the thermal conductivity of the 
fluid and local heat transfer coefficient, 
respectively, and  

0 1 1 2

3
0 0

(0) (0) ( ) (0) ( ) (0)

( ) (0) ..... ,
( )

x x

T Tx
T T

θ θ ε θ λ θ

λ θ ∞

∞

= + +

−
           + + =

−

          (38)

),0(' θxx GrGr =                    (39)

,
)]0([

)0(
)(

2
4/5

'

4/1'
,

'

θ
θ

−==
tx

x

Gr
Nu

S                  (40)

where 'S  the heat transfer parameter. 
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Also we can write ( )xQc , the total mass diffusion 
convected in the flow at any downstream location 
x as:  
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Under the same conditions as total heat convected 
we can write )(xQc  in the form: 
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The local total downstream mass flow rate per 
unit width is given by: 
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3. RESULTS AND DISCUSSION 
As a result of the numerical calculation, the 
dimensionless velocity, temperature and 
concentration distribution for the flow are 
obtained from Eqs. (16)- (27) and are displayed in 
Figures 1-11 for different values of ,Pr,R Sc and .N  
Also, we compared the numerical results of the 
shear stress at the surface ( )0 0f ′′ , and the rate of 
heat transfer ( )0 0θ ′−  is shown in Table 1 for the 
values of n and with out the chemical reaction, 
pressure work, heat generation, magnetic fields, 
permeability of porous media, radiation and 
viscous dissipation with those obtained by Rashad 
[21]. In Figures 1 and 2, we studied the effects of 
buoyancy ratio with two values of Prandtl number  
Pr = 0.71,3 on the velocity and temperature 
profiles for isothermal surface. We can see the 
velocity increases with an increase of the buoyancy 
ratio parameter and have the largest values at 
Pr = 0.71, while the temperature decreases with an 
increase on the buoyancy ratio parameter and 
have the largest values at Pr = 0.71. Figs. 3-5 show
the effects of Schmidt number on the velocity, 
temperature and concentration profiles for the 
prescribed surface heat flux case. It is noted that 
as Schmidt number increases, the velocity and 
concentration decrease whereas the temperature 
increases. Figs. 6-8 show the effects of buoyancy 
ratio on the velocity, temperature and concentration 
profiles for plane plume surface. We can see that as 
the buoyancy ratio parameter increases, the velocity
 

The surface mass flux wm  and local Sherwood 
number xSh  are determined as: 
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where '
1S  is the mass transfer parameter and the 

corresponding Grashof number for mass diffusion 
xGr  is related to the actual physical local Grashof 

number for mass diffusion '
xGr  by    

),0(' φxx GrGr =        (44)

where   
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Fig. 1. The effects of buoyancy ratio on 
the velocity profiles for isothermal 
surface. 
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Fig. 2. The effects of buoyancy ratio  
on the temperature profiles for 
isothermal surface. 
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Fig. 3. The effects of Schmidt number 
on the velocity profiles for heat flux 
surface. 
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Fig. 4. The effects of Schmidt number 
on the temperature profiles for heat flux 
surface. 
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Fig. 5. The effects of Schmidt number 
on the concentration profiles for heat 
flux surface. 
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Fig. 6. The effects of buoyancy ratio on 
the velocity profiles for plane plume 
surface. 
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Fig. 7. The effects of buoyancy ratio on 
the temperature profiles for plane 
plume surface. 
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Fig. 10. The effects of Prandtl number 
on temperature profiles for an adiabatic 
surface. 
 

Fig. 8. The effects of buoyancy ratio on 
concentration profiles for plane plume 
surface. 
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Fig. 9. The effects of Prandtl number 
on the velocity profiles for an adiabatic 
surface. 
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increases and the temperature and concentration 
decrease. Figs. 9-11 show the effects of  
Prandtl number on the velocity, temperature and 
concentration profiles for an adiabatic surface. It 
is observed that as Prandtl number increases, the 
velocity and temperature decrease and the 
concentration increases. 
 
REFERENCES 
1.  Cheng, P. and Minkowycz, W. Z 1977, J. 

Geophys. Res., 82, 2040.  
2.  Kaviany, M. and Mittal, M. 1985, ASME 

Bound Volume, Heat transfer in porous media 
and particulate flows, HTS, 46, 175. 

 

 

MHD free convection flow in a porous medium             75 

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Pr=0.3
Pr=0.5
Pr=0.7
Pr=0.9
Pr=1.0
Pr=1.5

 

φ 0

η

Fig. 11. The effects of Prandtl number 
on concentration profiles for an 
adiabatic surface. 
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