
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phosphorylated allenes - suitable precursors in  
organic syntheses 

ABSTRACT 
This article deals with the methods of synthesis of 
phosphorylated allenes, and their application in 
organic syntheses.  
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1. Introduction 
It is a very curious and not so popular fact that, 
right after the prediction of the correct core 
structure of allenes [1], the first attempt for their 
synthesis was used to prove the “nonexistence” of 
this class of organic compounds [2, 3]. However, 
a closer survey shows that in the period elapsed 
since 1984, an average of 400 publications on 
allenes appear annually. Among them the most 
striking ones are the series of books on the subject 
such as Muller’s Houben-Weyl issue of allenes, 
Patai’s issue on allenes, Brandsma’s laboratory 
manual, Landor’s “Chemistry of Allenes”, Schuster/ 
Coppola “Allenes in Organic Synthesis” and Krause/ 
Haschmi “Modern Allene Chemistry”.  
On the basis of the scientific achievements 
especially in the area of the development of 
fruitful methods of synthesis of allenes, during the 
last 10-15 years a rapid development of the 
chemistry of these compounds took place, which 
has proven to be very powerful in modern 
synthetic organic chemistry [4-6]. 
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and synthetic protocols for synthesis of these 
compounds have been described. 
The unique combination of double bonds in the 
molecules of those compounds, each with different 
reactivity along with the easy preparation, makes 
phosphorylated allenes useful substrates for the 
synthesis of different cyclic and noncyclic 
organophosphorus compounds. Recent investigations 
increase the scope of application of phosphorylated 
allenes as precursors in organic syntheses. Most 
of them are accompanied by the formation of five- 
or six-membered phosphorus heterocycles, which in 
many cases demonstrate certain biological activity. 
The subject matter of the present review summarizes 
the most useful methods for the preparative synthesis 
of the titled compounds, and also submits some 
recent data on their application in organic chemistry. 
 
2. Methods for synthesis of phosphorylated 
allenes 

2.1. Historical overview  
In 1962, Mark reported the obtaining of 
phosphorylated allenes via 2,3-sigmatropic 
rearrangement of propargyl phosphites (Scheme 1) 
[35].  
This first report increased the investigations of 
this reaction [36]. 
A plausible mechanism of the reaction proposed 
by authors involved a formation of intermediate 
with quasi-phosphonium structure (Scheme 2). 

Last but not least nowadays about 150 natural 
products comprising an allenic or cumulenic 
structure are known (For review see Beilstein 
database BS0302PR). This number clearly proves 
that allenes cannot be simply considered as 
curiosities, but are representatives of important 
structural elements for a wide variety of different 
classes of compounds. Almost all allenic natural 
products reported up to date are chiral and were 
isolated in non-racemic form, albeit not 
necessarily as enantiomeric pure compounds. A 
substantial number of these allenes show 
interesting biological activities and, in recent 
years, many attempts have been made to “tune” 
further the biological and pharmacological 
properties of certain pharmacologically active 
compounds simply by introducing allenic moiety 
into the existing backbone of the molecule. 
It is a well-known fact that organophosphorus 
compounds are important intermediates in organic 
synthesis and have been widely used as 
pharmaceutical [7-12], agricultural [13], and 
chemical agents [14-20]. Recently phosphorus 
heterocycles [21, 22] have provoked considerable 
interest because of their unique biological activities 
as hydrolytic enzyme inhibitors [23] and their 
anticancer effects [24-26], as well as because of 
their wide-ranging utilities as synthetic intermediates 
in organic syntheses. Consequently, much attention 
has been focused on the synthesis of these compounds 
[27-34]. Among them, particular interest was paid 
to the oxaphosphole derivatives. Numerous methods 
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Scheme 1. Synthesis of phosphorylated allenes via 2,3-sigmatropic 
rearrangement of propargyl phosphates. 
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atoms attached to phosphorus atom, which could 
be substituted with other atoms or functional 
groups (Scheme 4) [37]. 

2.3. Synthesis of phosphorylated allenes via  
2,3-sygmatropic rearrangement of activated 
alkynoles 
An approach involving the exchange of the 
hydroxyl-group with trimethylsilyl-group in the 
molecules of some alkyndioles was reported [48]. 
The reaction of the activated alkyndiols with some 
electrophilic reagents serves 1-substituted-1,2-
alkadienephosphonates (Scheme 5). 

2.4. Synthesis of phosphorylated allenes via  
2,3-sigmatropic rearrangement of modified 
alkynoles 

2.4.1. Sonogashira reaction 

The synthetic potential of the Sonogashira reaction 
was used for obtaining a number of modified 
alkynoles which react smoothly with 
dialkylchlorophosphites, following the known 
mechanism of 2,3-sigmatropic rearrangement. 
As a result, number of 1-aryl-substituted-1,2-
alkadienephosphonates were obtained (Scheme 6) 
[49].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some authors [37] define this reaction as Michelis- 
Arbuzov type reaction. The higher stereospecificity 
of the reaction was confirmed too [38]. 
Angelov and Enchev reported the same reaction, 
but with the N-analog of propargyl alcohol i.e., 
N-methyl-N-propargyl amine. This substrate reacts 
with dialkoxychlorophosphites with formation of 
salts 6. Heating of 6 up to boiling of the solvent leads 
to 1-methyl-2-alkoxy-2,5-dihydro-1,2-azaphosphole- 
2-oxide derivatives 8 (Scheme 3) [39]. 
The rearrangement of 6 to 8 is connected with the 
intermolecular proton exchange between N and C-
atoms, followed by addition of the phosphorus 
to the triple bond and formation of the 
intermediates 7, which undergo dealkylation to 
formation of 8.  
The isolation of the intermediate of the discussed 
reaction is a direct evidence for Mark’s mechanism. 

2.2. Synthesis of phosphorylated allenes via 
substitution reactions 
The discussed 2,3-sigmatropic rearrangement of 
propargyl phosphites was used for the synthesis of 
the dichlorides of 1,2-alkadienephosphonic acids. 
These compounds possess very reactive chlorine 
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Scheme 2. A plausible mechanism of the alkyne-allene rearrangement of 
propargyl phosphates. 
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Scheme 3. Synthesis of 1-methyl-2-alkoxy-2,5-dihydro-1,2-azaphosphole-2-oxide derivatives. 
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reagents leads to the corresponding 1,2-alkadienes 
(Scheme 7) [50].  

2.5. Synthesis of phosphorylated allenes via  
Pd-catalyzed cross-coupling reactions  

Chakravarty and Swamy reported a copper 
and amine free Pd-catalyzed cross-coupling 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4.2. Correy-Fuchs-Barbier type condensation 

By treatment of alkyncarboxylic acid methyl 
ester with butyllithium and acetone, a reactive 
intermediate 32 was detected. The subsequent 
reaction of this intermediate with trimethylchlorosylane 
leads to the corresponding sylil derivative 
33. Treatment of 33 with certain electrophilic 
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Scheme 4. Synthesis of phosphorylated allenes via substitution reactions. 
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Scheme 5. Synthesis of phosphorylated allenes via 2,3-sigmatropic rearrangement of activated alkynoles.
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2.6. Synthesis of phosphorylated allenes via 
allenyl anions 
The deuteroexchange of the olephinic proton at 
C1 atom of the 1,2-alkadienephosphonates is well 
documented [52]. The synthetic protocol reported 
involves the obtaining of the reactive intermediate 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reaction protocol in their investigation of the 
reactivity of 5,5-dimethyl-2-(1,2-alkadienyl)-[1,3,2] 
dioxaphosphinan-2-oxide [51].  
The same procedure was applied for the obtaining 
of 1,2-alkadienephosphonates 37 (Scheme 8) 
[50]. 
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Scheme 6. Synthesis of phosphorylated allenes via Sonogashira reaction. 
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leads to the formation of a reactive intermediate 
42, which further isomerizes to the corresponding 
1- and 3-vinyl-substituted phosphorylated allenes 
(Scheme 10) [53].  
The same protocol was employed for obtaining of 
dichlorides of 1- and 3-vinyl-substituted 
phosphorylated allenes 42a,b (Scheme 11). 

allenyl anion and its interaction with different 
electrophilic reagents (Scheme 9) [50]. 

2.7. Synthesis of 1- and 3-vinyl-substituted 
phosphorylated allenes   

A tree-component reaction involves vinylalkynoles, 
phosphorus trihalides and aliphatic alcohols and 
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Scheme 9. Synthesis of phosphorylated allenes via allenyl anions. 
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Scheme 10. Synthesis of 1- and 3-vinyl-substituted phosphorylated allenes. 
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tautomerized to double carbon-nitrogen bond 
(Scheme 15) [59]. 
A similar reaction takes place between the same 
reagent and 1,2-alenylphosphoneamide affording 
a cyclic product (Scheme 16) [60]. 
The above described migration and tautomerization 
of the unaffected carbon-carbon double bond could 
be observed also in reactions with hydroxylamine 
[60, 61], hydrazine [62, 63] and primary ammines 
[64] as nucleophiles. The β-iminylphosphineoxides, 
which are the products of these reactions, could be 
used as Vittig reagents (Scheme 17). 
When dialkylamines were used as nucleophile, 
no migration of the unaffected carbon-carbon 
double bond was possible and 2-amino-2-
alkenylphosphonate derivatives were isolated 
(Scheme 18) [65]. 
The nucleophilic addition of EtOH to 
phosphorylated allenes, followed by hydrolysis 
lead to the corresponding β-ketophosphonates 
[65]. The intramolecular addition of hydroxyl group 
to phosphorylated allenes gave 2,3-dihydrofurane 
derivatives [65]. 
The corresponding reaction of diethyl-[1,2-
propadienyl]-phosphonates, sulphones and 
sulfoxides with N-phenylhydroxylamine lead to 
formation of β-anionic- N-phenylvinyloxamine, 
which by [3,3]-sygmatropic rearrangement leads 
to anionic- 2-(2’-oxoalkyl)phenylamine. The 
described cyclization was an effective synthetic 
protocol for indole derivatives (Scheme 19) [66]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

3. Electrophilic addition reactions of 
phosphorylated allenes  
After the discovery of electrophile-induced 
heterocyclization of alkadienephosphonic dialkyl 
esters [54] this reaction was investigated in details. 
On the basis of prior reports [55] we have 
demonstrated that electron-deficited allenes, such 
as 1,2-alkadiene- and alkatrienephosphonates and 
phosphine oxides smoothly undergo electrophilic 
addition reactions which afforded 2,5-dihydro-
1,2-oxapohosphole 2-oxide derivatives with 
anomeric phosphorus atom.  
Recently it was proven that the latest compounds 
could be applied as heterocyclic building blocks 
in organic chemistry (Scheme 12) [56a,b,c]. 
 
4.  Nucleophilic addition reactions of 
phosphorylated allenes   
1,2-Propadienylphosphine oxides and phosphonates 
are good Michael acceptors and react smoothly 
with organometallic reagents (Scheme 13) [57]. 
The nucleophilic addition of NaN3 to phosphorylated 
allenes leads to 2-azido-2-alkenylphosphonates, 
which react with PPh3 to phosphineimines 
(Scheme 14) [58]. 
The reaction of monoacylhydrazide with 
1,2-alkadienephosphine oxide, leads to the 
formation of β-iminylphosphine oxide. By this 
reaction, the unaffected double carbon-carbon bond 

Scheme 11. Synthesis of 1- and 3-vinyl-substituted allenephosphonic dichlorides. 
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Scheme 13. Nucleophilic addition of organometallic reagents to phosphorylated allenes. 
 

Scheme 12. 2,5-dihydro-1,2-oxaphosphole building blocks. 
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The reaction of 1,2-propadienyldiphenylphosphine 
oxide and МХ (М = Na, Li; X = Cl, Br, I) leads 
to 2-halo-2-propenyldiphenylphosphine oxide 
(Scheme 22) [69]. 
The amidoesters of 1,2-alkadienephosphonic acids 
react with secondary ammines affording the 
corresponding β-ketophosphonates (Scheme 23) 
[41, 42]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Claisen rearrangement of the intermediate 87 
leads to 2-oxo-5-alkenylphosphonate or phosphine 
oxide (Scheme 20) [67]. 
1-Amido-1,2-allenephosphonates react with α-
hydroxyketones affording 2-alkylidene-2,5-
dihydrofurane via secondary conjugated nucleophilic 
addition and subsequent Vittig-Horner reaction 
(Scheme 21) [68]. 
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Scheme 18. Nucleophilic addition of diethylamine and ethanol to phosphorylated allenes. 
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the corresponding cyclic sulphonephosphonates 
(Scheme 24) [70]. 
The same substrates react with trivalent 
phosphorus compounds. (Scheme 25) [71]. 
 
6. Transition metal induced cycloisomerization 
of phosphorylated allenes  
The phenylphosphonic acid reacts with AgClO4 
with formation of the corresponding cyclic 
derivatives (Scheme 26) [72, 73]. 
We investigate the reactivity of 1,2 
alkadienephosphonic acids in this reaction and 
show that oxaphosphole derivatives were obtained. 
When amidoesters of 1,2-alkadienephosphonic 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Cycloaddition reaction of 1- and 3-vinyl-
substituted phosphorylated allenes   
The 1,4-cycloaddition of SO2 to 1- and 3-vinyl-
substituted phosphorylated allenes leads to 
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Scheme 20. Phosphorylated allenes as precursors for alkenylphosphonates and alkenylphosphine oxides. 
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Scheme 23. Phosphorylated allenes as precursors for β-ketophosphonates. 
 

Scheme 24. Phosphorylated allenes as precursors for cyclic sulphonephosphonates. 
 

Scheme 25. Phosphorylated allenes as precursors for McCormack reaction. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acids were used as substrates, the azaphosphole 
derivatives were isolated (Scheme 27)  [74]. 
 
7. Conclusions 
The described methods represent phosphorylated 
allenes as suitable substrates for electrophilic and 
nucleophilic addition reactions, cycloisomerization 
reactions, as well as cycloaddition reactions. 
All discussed aspects in this paper show that 
allenephosphonates, being minorities in the big 
family of allenic hydrocarbons, are actually very 
important precursors in organic synthesis. 
It is important to underline that: 
1.  All the described methods for preparation of 

the phosphorylated allenes are environment-
friendly; 

2.  All the reactions proceed with almost total 
atom economy; 

3.  All of the described compounds are biologically 
active substances. 
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