Tricarbonylchromium complexes of 4-aryl-1,4dihydropyridine derivatives: Regioselective reaction

Adeleh Moshtaghi Zonouz* and Fatemeh Samadi
Chemistry Department, Faculty of science, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran

Abstract

Tricarbonylchromium complexes of 4-aryl-1,4dihydropyridines have been synthesized. Selective complexation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ on the aryl ring in the presence of a 1,4-dihydropyridine ring using the standard thermodynamic conditions $\left(\mathrm{Cr}(\mathrm{CO})_{6}\right.$ in refluxing dibutyl ether/THF) was achieved.

KEYWORDS: 1,4-dihydropyridines, tricarbonylchromium complexes, Hantzsch synthesis, calcium channel blockers, regioselectivity

INTRODUCTION

1,4-Dihydropyridines (4-aryl-1,4-dihydro-2,6 di-methyl-3,5-pyridinedicarboxylates) are known to have potent antihypertensive and vasodilative actions through calcium antagonism [1, 2]. Various 1,4-dihydropyridine derivatives have been developed for clinical purposes and are used as drugs against hypertension and ischemic heart disease. Nifedipine (Fig. 1), with symmetrical substituents on its dihydropyridine ring, is achiral; while second-generation derivatives, such as nimodipine, amlodipine, and nicardipine (Fig. 1), with unsymmetrical substitution, are chiral, and demonstrate moderate to significant enantioselectivity in their pharmacological effects. Although the two enantiomers possessing an asymmetric carbon at the position 4 have been reported to have different biological activities [3, 4, 5], most 1,4dihydropyridines are provided as racemates. Because of importance of C-4 chirality in the

[^0]pharmacological activity of 1,4-dihydropyridines, the availability of asymmetric synthesis or resolution of racemate forms are desirable.
On the other hand (arene) chromium tricarbonyl derivatives have found wide application in synthesis [6] and in biological applications as probes of drug-receptor binding [7]. Since unsymmetrically 1,2- and 1,3-disubstituted arenechromium tricarbonyl complexes are chiral and are enantiomeric on the basis of which face of the arene the chromium tricarbonyl fragment occupies [8], our attention has focused on the preparation of tricarbonylchromium complexes of Hantzsch esters. To our knowledge, there is just one report on the synthesis of tricarbonylchromium complexes of Hantzsch esters [9]. Herein, we report our preliminary results on the synthesis of some tricarbonyl $\left(\eta^{6}\right.$-arene)chromium complexes of 4-aryl-1,4-dihydripyridines. Further studies in this field are being actively pursued in our laboratory.

EXPERIMENTAL

All manipulations involving chromium complexes were performed under atmosphere of purified argon and using gas/vacuum double manifold and standard Schlenk technique [17]. THF was distilled from sodium/benzophenone ketyl immediately prior to use. Dibutyl ether was dried over sodium and distilled under an atmosphere of argon prior to use. $\mathrm{Cr}(\mathrm{CO})_{6}$ was purchased from Aldrich and sublimed prior to use. Elemental analyses: Elementer Model Vario EL III; FT-IR: Bruker PS-15; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Bruker SP-400 AVANC; melting points: Electrothermal-9100.

Nifedipine

(\pm) Amlodipine

(\pm) Nicardipine

(\pm) Nimodipine

Figure 1. Biologically important 1,4-dihydropyridines.

General procedure for preparation of

 tricarbonyl $\left(\eta^{6}\right.$-arene)chromium (0) complexesA mixture of 4-aryl-1,4-dihydropyridine (0.83 mmol) and freshly sublimed $\mathrm{Cr}(\mathrm{CO})_{6}(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in dibutyl ether (27 ml) and THF (3 ml) was heated under reflux (bath temperature: $140^{\circ} \mathrm{C}$) for 20-68 h. Volatiles were removed in vacuo. The resulting yellow oil or solid was then purified by column chromatography $\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ Grade III] or recrystallization to give the chromium complexes.
[3,5-dicarboethoxy-2,6-dimethyl-4-(η^{6}-2-methoxyphenyl)-1,4-dihydropyridine] tricarbonylchromium(0) 2

The general procedure was followed using 4-aryl-1,4-dihydropyridine $\mathbf{1 a}$ for 48 h and crystallization of crude yellow solid from dichloromethane / hexane gave 2 as yellow solid ($0.34 \mathrm{~g}, 80 \%$).
m.p. $164{ }^{\circ} \mathrm{C}$ (Dec.); IR (KBr) $v_{\text {max. }} 1961$ and $1883 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11$ (t, J=7.09 Hz, 3H, CH_{3} ester), 1.21 (t, J=7.11 Hz, 3H, CH_{3} ester), $2.24(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}-2$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-6\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right)$, 3.94-4.10 (m, 4H, $2 \times \mathrm{CH}_{2}$ ester), 4.96 (t, $\mathrm{J}=6.28$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{a}}$), 5.00 (s, 1H, C(4)-H), 5.39 (d, $J=6.79 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{c}}$), 5.63 (dd, $J_{1}=5.30 \mathrm{~Hz}$, $\left.J_{2}=1.23 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{d}}\right), 5.86\left(\mathrm{dt}, J_{1}=6.53 \mathrm{~Hz}\right.$, $J_{2}=1.22 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{b}}$), 8.96 (s, $1 \mathrm{H}, \mathrm{NH}$) ppm; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N} \mathrm{Cr} \mathrm{O}_{8}$: C, 55.75; H, 5.08; N, 2.82. Found: C, 55.46; H, 4.75; N, 2.79.
[3,5-dicarboethoxy-2,6-dimethyl-4-(η^{6}-2-chlorophenyl)-1,4-dihydropyridine] tricarbonylchromium(0) 3
The general procedure was followed using 4-aryl-1,4-dihydropyridine $\mathbf{1 b}$ for 48 h and Crystallization of crude yellow solid from toluene/ hexane gave 3 as yellow crystalline solid (51\%).
m.p. $160{ }^{\circ} \mathrm{C}$ (Dec.); IR (KBr) $v_{\text {max. }} 1961$ and $1883 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18-1.27\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ ester), 2.32(s, 3 H , $\left.\mathrm{CH}_{3}-2\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-6\right), 4.08-4.28(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$ ester), $4.6(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(4)-\mathrm{H}), \quad 5.08-5.80$ (m, 4H, Ar-H), 7.19(br.s, 1H, NH) ppm.

[2,10-dimethyl-1,8b-dihydro- $\boldsymbol{\eta}^{6}$-benzo-2-

 pyrone[3,4c]pyridine-9-carboxylic acid ethyl ester] tricarbonylchromium(0) 4The general procedure was followed using 4-aryl-1,4-dihydropyridine 1c or $\mathbf{1 d}$ for 68 h and crystallization of crude yellow solid from dichloromethane / hexane gave 4 as yellow crystalline solid (62\%).
m.p. $180^{\circ} \mathrm{C}($ Dec. $)$; IR (KBr) $v_{\text {max. }} 1959$ and 1875 cm^{-1} (CO); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=1.17\left(\mathrm{t}, \quad J=7.08 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ester), 2.07 (s, $\left.3 \mathrm{H}, \quad \mathrm{CH}_{3}-2\right), \quad 2.27\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{3}-6\right.$), 4.05- 4.25(m, 2H, CH_{2} ester), 4.68(s, 1 H , C(4)-H), $5.24\left(\mathrm{t}, \quad J=6.19 \mathrm{~Hz}, 1 \mathrm{H}, ~ \mathrm{Ar}-\mathrm{H}_{\mathrm{b}}\right), 5.59$ (d, J=6.35 Hz, 1H, Ar-H ${ }_{\mathrm{d}}$), 5.83- 5.91(m, 2H, $\mathrm{Ar}-\mathrm{H}_{\mathrm{a}}$ and $\mathrm{Ar}-\mathrm{H}_{\mathrm{c}}$), 9.29(br.s, 1H, NH) ppm.
[2-morpholinomethyl-3,5-dicarboethoxy-6-dimethyl-4-(η^{6}-2-methoxyphenyl)-1,4dihydropyridine] tricarbonylchromium(0) 9
The general procedure was followed using 4-aryl-1,4-dihydropyridine 6 for 68 h and purification of yellow oil by column chromatography $\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ Grade III, EtOAc/Hex 1:2] and then crystallization from ethanol gave 9 as yellow crystalline solid (47\%).
m.p. $180{ }^{\circ} \mathrm{C}(\mathrm{Dec}$.$) ; IR (KBr) v_{\text {max. }} 1947$ and $1858 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.13\left(\mathrm{t}, \quad J=6.95 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ester), 1.22 (t, J=7.01 Hz 3H, CH ${ }_{3}$ ester), 2.29(s, 3 H , $\left.\mathrm{CH}_{3}-6\right), 2.39-2.42\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}-\mathrm{N}\right), 3.57-3.66$
(m, 6H, $2 \times \mathrm{CH}_{2}-\mathrm{O}$ and $\mathrm{CH}_{2}-2$), 3.69 (s, 3 H , $\left.\mathrm{O}-\mathrm{CH}_{3}\right), \quad 3.96-4.12\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$ ester), 4.96 (t, J=6.23Hz, 1H, Ar- H_{b}), $5.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(4)-\mathrm{H})$, $5.41\left(\mathrm{~d}, \mathrm{~J}=6.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{d}}\right), 5.60-5.65(\mathrm{~m}, 1 \mathrm{H}$, and $\left.\mathrm{Ar}-\mathrm{H}_{\mathrm{a}}\right), 5.87\left(\mathrm{t}, \quad J=6.33 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{c}}\right)$, 8.60(br.s, 1H, NH) ppm.

[2-(Methylthio)-methyl-3,5-dicarboethoxy-6-methyl-4-(η^{6}-2-methoxyphenyl)-1,4dihydropyridine] tricarbonylchromium(0) 10

The general procedure was followed using 4-aryl-1,4-dihydropyridine 7 for 20 h and purification of yellow oil by column chromatography $\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ Grade III, EtOAc/Hex 1:3] gave mixture of $\mathbf{1 0}$ and 1a (1:2) as yellow crystalls. The ratio of products was obtained by analyzing of the ${ }^{1} \mathrm{H}$ NMR spectrum. When the reaction was carrird out at $160^{\circ} \mathrm{C}$, compound 1a was the sole product of the reaction.
Compound 10: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.09\left(\mathrm{t}, J=7.04 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ ester), $2.03(\mathrm{~s}$, $\left.3 \mathrm{H}, \quad \mathrm{S}-\mathrm{CH}_{3}\right), \quad 2.36\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{3}-6\right), \quad 3.70$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.76-4.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{S}\right.$ and $2 \times \mathrm{CH}_{2}$ ester), $4.98(\mathrm{t}, J=6.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 5.05 (s, 1H, C4-H), 5.41(m, 1H, Ar-H), 5.64 (m, 1H, Ar-H), 5.88(m, 1H, Ar-H), 9.10(br.s, 1H, NH) ppm.
Compound 1a: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.09\left(\mathrm{t}, \quad J=7.04 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ ester), 2.19 (s, $6 \mathrm{H}, \mathrm{CH}_{3}-2$ and $\mathrm{CH}_{3}-6$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right.$), 3.93(q, $J=7.03 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ ester), $5.15(\mathrm{~s}, 1 \mathrm{H}$, C4-H), 6.77(t, J=7.35 Hz, 1H, Ar-H ${ }^{\text {b }}$, 6.83 (d, $J=8.08 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{a}}$), 7.03-7.08(m, 2H, $\mathrm{Ar}-\mathrm{H}_{\mathrm{c}}$ and $\mathrm{Ar}-\mathrm{H}_{\mathrm{d}}$), 8.36(br.s, 1H, NH) ppm.
Preparation of 2-morpholinomethyl-3,5-dicarboethoxy-6-dimethyl-4-(2-methoxyphenyl)-1,4-dihydropyridine 6
A solution of 2-bromomethyl-3,5-dicarboethoxy-6-methyl-4-(2-methoxyphenyl)-1,4-dihydropyridine 5 (obtained from 1.39 mmol of 1a) in THF (20 ml) was added via a cannula, to a magnetically stirred solution of sodium salt of morpholine in THF at $0^{\circ} \mathrm{C}$. Sodium salt of morpholine was prepared in situ from morpholine ($0.24 \mathrm{ml}, 2.18 \mathrm{mmol}$) and $\mathrm{NaH} 60 \% ~(0.096 \mathrm{~g}$, 2.4 mmol) in THF (15 ml) at room temperature under argon atmosphere for 1 h and then cooled to $0^{\circ} \mathrm{C}$. The mixture was stirred by warming to room
temperature for 3 h and then evaporated. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and HCl 2 M , the organic layer washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The resulting oil was purified by column chromatography [silicagel 60, 70-230 mesh, EtOAc/Hex (5:2)] and then recrystallization of obtained yellow oil from ethanol to give 6 ($0.34 \mathrm{~g}, 55 \%$) as yellow crystals.
m.p. 132.5-134 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\overline{\mathrm{V}}=3283(\mathrm{~m})$, 29812850(m), 1682(s), 1648(m), 1606(m), 1471(s), 1280(s), 1200(s),1103(s), 749(s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \quad \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=1.07-1.14(\mathrm{~m}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$ ester), 2.27(s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-6\right), 2.39(\mathrm{t}$, $\left.J=4.14 \mathrm{~Hz}, \quad 4 \mathrm{H}, \quad 2 \times \mathrm{CH}_{2}-\mathrm{N}\right), \quad 3.52(\mathrm{AB}$ quartet, $\left.J=14.44 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-2\right), 3.60(\mathrm{t}, J=4.33 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{2}-\mathrm{O}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right)$, $3.91-3.98(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$ ester), $5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}(4)-\mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=7.75$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{b}}$), 6.85(d, J=7.75Hz, 1H, Ar-H H_{d}, 7.02-7.10(m, 2H, Ar- H_{a} and Ar- H_{c}), 8.35(br.s, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm}$.
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 64.85; H, 7.25; N , 6.30. Found: C, 64.72; H, 7.24; N, 6.57.

S-[(6-methyl-3,5-dicarboethoxy-4-(2-
 methoxyphenyl)1,4-dihydropyridin-2-yl)-methyl]-isothiouronium bromide 7

A mixture of 2-bromomethyl-3,5-dicarboethoxy-4-(2-methoxyphenyl)-6-methyl-1,4-dihydropyridine (obtained from 1.39 mmol of 1a), thiourea (0.12 $\mathrm{g}, 1.53 \mathrm{mmol}$) and ethanol (35 ml) was heated to reflux for 1.5 h and then evaporated. Recrystallization of crude product from acetonitrile furnished 7 ($0.54 \mathrm{~g}, 75 \%$) as yellow crystals.
m.p. $152{ }^{\circ} \mathrm{C}$ (Dec.); IR (KBr) $\overline{\mathrm{V}}=3300$ 2750(br.s), 1672(s), 1646(s),1507(s), 1306(s), 1289(s), 1217(s), 1097(s), 757(m) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ ester), 2.37(s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-6\right)$, $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right)$, $3.98-$ $4.13\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$ ester), $4.44(\mathrm{AX}, J=15.20 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-2\right), 4.73\left(\mathrm{AX}, J=15.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-2\right)$, 5.17(s, 1H, C(4)-H), 6.78-6.82 (m, 2H, Ar-Ha and Ar- H_{c}), 7.09-7.16(m, 2H, Ar- H_{b} and $\mathrm{Ar}-\mathrm{H}_{\mathrm{d}}$), 8.26(br.s, $1 \mathrm{H}, \mathrm{NH}$), 8.79(br.s, $2 \mathrm{H}, \quad \mathrm{NH}_{2}$), 9.18(br.s, $2 \mathrm{H}, \mathrm{NH}_{2}$) ppm; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{5} \mathrm{~S}$: C, 47.81; H, 5.62; N, 8.36. Found: C, 48.01; H, 5.49; N, 8.57.

2-(Methylthio)-methyl-3,5-dicarboethoxy-6-methyl-4-(2-methoxyphenyl)-1,4dihydropyridine 8

An aqueous solution of NaOH ($32 \%, 0.53 \mathrm{ml}$) was added to a stirred solution of $7(0.5 \mathrm{~g}, 0.97$ mmol) and methyl iodide ($0.27 \mathrm{ml}, 2.33 \mathrm{mmol}$) in ethanol/water (1:1, 20 ml), under an argon atmosphere. After 1 h stirring at room temperature, the mixture was filtered. Recrystallization of the crude product from ethanol/water furnished compound 8 ($0.37 \mathrm{~g}, 66 \%$).
m.p. $124-126{ }^{\circ} \mathrm{C}$; IR (KBr) $\overline{\mathrm{v}}=3328(\mathrm{~s})$, 3091(w), 2977-2919(m), 1673(s), 1638(m), 1617(m), 1492(s), 1286(s), 1214(s), 1103(s), 746(s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.17-1.23\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$ ester), $2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{S}-$ $\left.\mathrm{CH}_{3}\right), \quad 2.34\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{CH}_{3}-6\right), \quad 3.81(\mathrm{~s}, \quad 3 \mathrm{H}$, $\left.\mathrm{O}-\mathrm{CH}_{3}\right), 3.81-4.09\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{S}\right.$ and $2 \times \mathrm{CH}_{2}$ ester), $5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H})$, $6.65(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 6.78- 6.83(m, 2H, $\mathrm{Ar}-\mathrm{H}_{\mathrm{a}}$ and $\left.\mathrm{Ar}-\mathrm{H}_{\mathrm{c}}\right)$, 7.11 (dt, $J_{1}=7.60 \mathrm{~Hz}, J_{2}=1.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{b}}$), 7.21 (dd, $J_{1}=7.64 \mathrm{~Hz}, J_{2}=1.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{\mathrm{d}}$) ppm; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$: C, 62.20; H, 6.71; N, 3.45. Found: C, 61.93; H, 6.58; N, 3.66.

RESULTS AND DISCUSSION

Synthesis was started by Hantzsch reaction of ethyl acetoacetate with appropriate aldehyde and ammonium acetate in refluxing ethanol over the montmorillonite K10 catalyst for 20 minutes,
which afforded the 1,4-dihydropyridines 1a-d (Scheme 1) [10]. In the reaction with salicylaldehyde compounds 1c and 1d were obtaind in 23% and 77% respectively, the ratio of products was determined by the ${ }^{1} \mathrm{H}$ NMR spectrum.

Tricarbonylchromium complexes 2 and $\mathbf{3}$ were synthesized by treating 1a and 1b with hexacarbonylchromium in di-n-butyl ether and tetrahydrofuran (THF) (9:1 v / v) at reflux temperature. Treating of both 1c and 1d with $\mathrm{Cr}(\mathrm{CO})_{6}$ under this condition gave complex 4 as the sole product of the reaction (Scheme 2). This result demonstrates the intramolecular transesterification

Scheme 1. Synthesis of 4-aryl-1,4-dihydropyridine derivatives.

Scheme 2. Synthesis of tricarbonylchromium complexes of 4-aryl-1,4-dihydropyridines.
between hydroxyl substituent of 4-aryl ring and the ester group of dihydropyridine ring. In all these compounds complexation was achieved selectively on the aryl ring in the presence of a 1,4-dihydropyridine ring. Regioselectivity was clearly established as η^{6} to the 4 -aryl substituent by the ${ }^{1} \mathrm{H}$ chemical shifts. For example the complexation of $\mathbf{1 a}$ at the benzo ring with the $\mathrm{Cr}(\mathrm{CO})_{3}$ group causes a large up field shift of these aromatic proton resonances (ca. 1.5 ppm) and a smaller up field shift of the benzylic proton (C(4)-H) resonance (0.27 ppm). These effects are commonly observed when aromatic substrates are complexed with tricarbonylchromium [11].

Unsymmetrically 1,2- and 1,3-disubstituted arenechromium tricarbonyl complexes are planar chiral compounds and are enantiomeric on the basis of which face of the arene the chromium tricarbonyl fragment occupies [8]. The stereochemical descriptor for an planar chirality is usually determined following the rules introduced by Schlögl: [12, 13] the arene ring is monitored from that side which is not coordinated to the chromium moiety. The priority of the substituents is then determined employing the Cahn-IngoldPrelog (CIP) rules. If the shortest path from the substituent displaying highest priority to the
following one is clockwise, the absolute configuration is denoted as Rp, and the apposite case is referred to as Sp (e.g. (Sp)-2 and (Rp)-2). There exists also a different procedure for the stereochemical assignment consisting of an extension of the CIP system which results in opposite planar chiral descriptors [14].

(Sp)-2

(Rp)-2

Then, we prepared the unsymmetrical derivatives of $\mathbf{1 a}$ for the preparation of diastereomeric tricarbonyl chromium complexes of 1,4-DHPs. The Reaction of 1,4-dihydropyridine 1a with 1.1 equivalents of pyridinium bromide perbromide in dichloromethane/pyridine at $-20^{\circ} \mathrm{C}$ for 45 minutes afforded the crude product 5 as a yellow gum. We have published before the synthesis of 5 [2-bromomethyl-3,5-dicarboethoxy-6-methyl-4-(2-

Scheme 3. Preparation of unsymmetrical 1,4-dihydropyridine derivatives.
methoxyphenyl)-1,4-dihydropyridine] in high yield [15] by modifying the literature methods [16]. Without further purification this brominated adduct was coupled with sodium salt of morpholine and thiourea as nucleophiles at different conditions to give 2-substituted 1,4-dihydropyridines 6 and 7 respectively. In the reaction of 5 with thiourea in refluxing ethanol for 5h, evaporation of solvent and recrystallization from EtOAc/Hex, isothiouronium salt 7 is formed. On the other hand, reaction of isothiouronium salt 7 with methyl iodide in the presence of base produced S-alkylated derivative 8 (Scheme 3). The C-4 carbon atom of 1,4-dihydropyridines is a prochiral atom. When at least one of the substituents, bound to the C-2 and C3 carbon atoms, is different from those on the symmetric C-6 and C-5 positions of ring, the C-4 carbon atom is chiral and the compounds are racemates. Meanwhile compounds 6-8 with different substituents at C-2 and C-6 are racemic mixtures.
Complexation of racemate 6 [2-morpholinomethyl-3,5-dicarboethoxy-6-methyl-4-(3-methoxyphenyl)-1,4-dihydropyridine] with hexacarbonyl chromium, under thermal condition, gave complex 9. The reaction of 8 [2-(methylthio)-methyl-3,5-dicarboe-thoxy- 6-methyl-4-(3-methoxyphenyl)-1,4-dihydropyridine] with hexacarbonyl chromium, under thermal condition, gave 1:2 mixtures of tricarbonyl chromium complex 10 and desulfurized compound 1a [2,6-dimethyl-3,5-dicarboethoxy-4-(2-methoxy-phenyl)- 1,4-dihydropyridine]. The ratio of products was determined by ${ }^{1} \mathrm{H}$ NMR spectrum, unfortunately we couldn't separate them by recrystallization and chromatography methods.

REFERENCES

1. Goldmann, S. and Stoltefuss, J. 1991, Angew. Chem. Int. Ed. Engl., 30, 1559.
2. Triggle, D. J., Langs, D. A., and Janis, R. A. 1989, Med. Res. Rev., 9, 123.
3. Tamazawa, K., Arima, H., Kojima, T., Isomura, Y., Okada, M., Fujita, S., Furuya, T., Takenaka, T., Inagaki, O., and Terai, M. 1986, J. Med. Chem., 29, 2504.
4. Shibanuma, T., Iwanani, M., Okuda, K., Takenaka, T., and Murakami, M. 1980, Chem. Pharm. Bull., 28, 2809.
5. Kajino, M., Wada, Y., Nagai, Y., Nagaoka, A., and Meguro, K. 1989, Chem. Pharm. Bull., 37, 2225.
6. Collman, J. P. and Hegedus, L. 1987, Principles and Applications of Organotransition Chemistry, University Science Books, Mill Valley, CA, pp. 307-333.
7. A(a) Gruselle, M., Deprez, P., Vessieres, A., Greenfield, S., jaouen, G., Larue, J. P., and Thouvenot, D. J. 1989, Organomet. Chem., 359, C53-C56. (b) Vessieres, A., Tondu, S., Jaouen, G., Top, S., Ismail, A. A., Teutsch, G., and Moguilewsky, M. 1988, Inorg. Chem. 27, 1850. (c) Jaouen, G. and Vessieres, A. 1985, Pure Appl. Chem., 57, 1865.
8. Morris, M. J. 1995, In: Comprehensive Organometallic Chemistry, Abel, E. W. F., Stone, G. A., and Wilkinson, G. (Eds.), Pergamon press, Oxford, Vol. 6, PP. 504.
9. Hubler, T. L., Meikrantz, S. B., Bitterwolf, T. E., Natale, N. R., Triggle, D. J., and Kwon, Yong-Wha. 1992, J. Med. Chem., 35, 1165.
10. Moshtaghi, Z. A. and Baradaran, H. S. 2008, Synth.Commun., 38(2), 290.
11. Ewin, R. A., MacLeod, A. M., Price, D. A., Simpkins, N. S., and Watt, A. P., 1997, J. Chem. Soc. Perkin Trans., 1, 401.
12. Schlögl, K. 1967, Top. Stereochem., 1, 39.
13. Bolm, C. and Muniz, K. 1999, Chem. Soc. Rev., 28, 51.
14. Solladié-Cavallo, A. 1989, In: Advances in Metal Organic Chemistry, vol. 2, Liebeskind, L. S. (Ed.), JAI, London, p. 99.
15. Mirzaei, Y. R. and Zenouz, A. M. 1997, Iran. J. Chem. \& Chem. Eng., 16(1), 29.
16. (a) Sircar, I., Anderson, K. R., and Bonadies, L. Tet. Lett. 1988, 29, 6835. (b) Alker, D. and Swanson, A. G. 1990, Tet. Lett., 31(10), 1479. (c) Young, S. D. Synthesis, 1984, 617.
17. Shriver, D. F. and Drezdon, M. A. 1986, The Manipulation of Air Sensitive Compounds, 2nd Edn., John Wiley \& Sons, New York.

[^0]: *adelehmz@yahoo.com

