
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A new DFT method for atoms and molecules in Cartesian grid

ABSTRACT 
Electronic structure calculation of atoms and 
molecules, in the past few decades has largely 
been dominated by density functional methods.  
This is primarily  due to the fact that this can account 
for  electron  correlation  effects  in a rigorous,  
tractable manner  keeping the computational  cost  
at a manageable  level.  With recent advances in 
methodological development, algorithmic progress 
as well as computer technology, larger physical,  
chemical  and biological systems are amenable  to 
quantum mechanical calculations than ever before. 
Here we report the development of a new  
method for accurate reliable description of atoms,  
molecules within the Hohenberg-Kohn-Sham 
density functional theory (DFT). In a Cartesian  
grid, atom-centered  localized basis set,  electron 
density, molecular orbitals, two-body potentials 
are directly built on the grid.  We employ a 
Fourier convolution  method  for  classical  
Coulomb  potentials  by  making  an  Ewald-type  
decomposition technique in terms of short- and 
long-range interactions. One-body matrix elements 
are obtained from  standard  recursion  algorithms  
while two-body  counterparts  are  done  by  direct  
numerical integration. A systematic analysis of 
our results obtained on various properties, such as 
component energy,  total energy,  ionization energy,  
potential energy  curve,  atomization  energy,  
etc., clearly demonstrates that the method is 
capable of producing quite accurate and 
competitive (with those from other methods in the 
literature) results.  In brief, a new variational DFT
 

method is presented for atoms and molecules, 
completely  in Cartesian grid. 
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I. INTRODUCTION 
Calculation of wave functions of large molecules 
by first principles methods has been an 
outstanding problem having much relevance in 
varied fields such as theoretical chemistry, 
condensed matter physics, material science, etc. 
On the one hand, there are standard Roothaan-
Hartree-Fock (RHF)-type methods, as implemented 
in several quantum chemistry program packages, 
though not difficult are certainly tedious and 
cumbersome indeed, if the number of basis 
functions becomes large (which is easily the case 
for even reasonably smaller molecules). Also 
these methods ignore the important effects arising 
from electron correlation. On the other side, there 
are numerous semi-empirical methods, which 
admittedly have often found various successful 
applications in describing molecular properties, but 
raises many questions regarding their applicability 
for some systems such as transition metal complexes 
with different kind of ligands. They suffer from the 
well-known problem of parametrization; stated 
differently, a certain parametrization scheme is 
usually successful for a restricted class of 
compounds with respect to a restricted number of 
properties. 
Over the last three decades, there has been 
considerable progress in the formulation and 
implementation of density functional methods, of
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as obtainable from a wave function. Initial  attempts 
to use electron  density  as  a basic  variable  for a 
many-electron system, is almost as old as quantum  
mechanics  and  is due,  independently to, Thomas  
and  Fermi  [16, 17]. In this quantum statistical 
model, kinetic energy of an interacting system is
approximated as an explicit functional of density 
(by assuming electrons to be in the background of 
a non-interacting homogeneous electron gas),  
while electron-nuclear attraction and electron  
repulsion contributions are treated classically. 
However, since this completely ignores the 
important exchange, correlation effects and kinetic 
energy is approximated very crudely, results  
obtained  from this  method  are rather too crude  
to be of any  use. It also fails to explain the 
essential physics and chemistry such as shell 
structure of atoms and molecular binding.  
Significant improvements were made by Dirac 
[18] by introducing exchange effects into the 
picture, the so-called local density approximation 
(LDA). 
The stark simplicity of these above procedures  
encouraged multitude of solid-state and molecular  
calculations.  However, due to a lack of rigorous 
foundation as well as considerably large errors  
encountered  in these  works, the theory  lost  its  
charm and  appeal until  a breakthrough work by 
Hohenberg and Kohn [19], which rekindled  the 
hope.  This changed the status of DFT as it got a 
firm footing and laid the groundwork of all of 
today’s DFT. The first theorem simply states that 
the external potential vext(r), and hence total 
energy of an interacting system is a unique 
functional of ρ(r). According to the second theorem, 
ground-state energy can be obtained variationally, 
i.e., the density that minimizes total energy is the 
exact ground-state density. Note that although 
these theorems are very powerful, they merely 
prove the existence of a functional, but do not 
offer any route of computing this density in 
practical terms. Even though a mapping between 
ground-state density and energy is established, it 
remains mute about the construction of this 
“universal” functional. Thus as far as computational 
DFT is concerned very little progress is made 
compared to the prevailing situation. One still 
needs to solve the many-body problem in 
presence of vext(r). 
The situation changed dramatically in the following 
year after the publication of a seminal work by
 

which Xα or Hartree-Fock-Slater, is the simplest,  
best known. The primary reason for this is because 
it can account for electron correlation effects in a 
rigorous, quantitative, transparent manner. Moreover 
it also provides a good compromise between  
computational cost and accuracy. Some other 
popular  routes toward  introducing  electron
correlation in a  many-electron problem  are  
through Moller-Plesset (MPn)  and  coupled  
cluster  methods. Density functional theory (DFT)  
[1–15], in particular, has become a powerful and 
versatile tool in recent years; and more preferable 
to the other correlated methods, partly because of 
its favorable scaling (which is typically N3, 
although recently linear-scaling methods have 
been available).  Obviously, the ultimate goal is to 
be able to describe structure, dynamics,  
properties of larger and larger systems as 
accurately as possible (close to experimental 
results) with optimal computational resources. 
Recent dramatic explosion in computer 
technology and emergence of accurate density 
functional techniques, in both formalism and 
algorithmic aspects, have made it possible to 
reach this goal which has eluded quantum 
chemistry for long.  In more practical terms, this 
is achieved through a successful marriage of 
basis-set approaches  to electronic structure theory 
and  efficient  grid-based  quadrature  schemes to 
produce a scaling which is at least as good as 
self-consistent methods. This also simultaneously 
allows the very difficult many-body effects to be 
approximated by an effective one-electron potential. 
A proliferation of DFT-based methodologies has 
been witnessed for electronic structure calculation 
of a broad range of systems including atoms, 
molecules, clusters, solids and this continues to 
grow at a rapid pace. 
The  key concept of DFT  is that all  desired  
properties of a many-electron interacting system 
can  be  obtained  in terms of the ground-state  
electron  density, ρ(r),  in stead  of a complicated  
many-electron wave function, as in traditional  
ab initio  approaches. This real, non-negative, 3D, 
scalar function of position is easily visualizable 
(in contrast to the wave function which is, in 
general, complex, 4N dimensional and not  
so easily interpretable visually). It has direct 
physical significance (can be directly measured 
experimentally) and, in principle, provides all the 
informations about ground and all excited states,
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kohn and Sham [20], who proposed a clever route 
to approach the unknown universal functional. This 
is done by mapping the full interacting system of 
interest with the real potential onto a fictitious, 
non-interacting system of particles.  The electrons 
move in an effective Kohn-Sham (KS) single-
particle potential vKS (r) and the auxiliary system 
yields same ground-state density as the real 
interacting system, but greatly simplifies our 
calculation. Since exact wave functions of non-
interacting fermions are represented by Slater 
determinants, major portion of kinetic energy can 
be computed to a good accuracy, in terms of one-
electron orbitals which construct the reference 
system. The residual unknown contribution of 
kinetic energy (which is a fairly small quantity) is 
dumped in to the unknown, non-classical 
component of electron-electron repulsion as, 
 F [ρ]  = Ts[ρ] + J [ρ] + Exc[ρ] 
 

Exc[ρ]  = (T [ρ] − Ts[ρ]) + (Eee[ρ] − J [ρ]) = Tc[ρ] + Enc[ρ].
                                                                            (1) 

Ts[ρ] signifies exact kinetic energy of the 
hypothetical non-interacting system; J[ρ] the 
classical component of electron-electron repulsion. 
In this partitioning scheme then, Exc[ρ] contains 
everything that is unknown, i.e., non-classical 
electrostatic effects of electron-electron repulsion 
as well as the difference between true kinetic 
energy Tc[ρ] and Ts[ρ]. Now one can write the 
single-particle KS equation in standard form, 

21 ( ) ( ) ( )
2 eff i i iv ψ εψ⎡ ⎤− ∇ + =⎢ ⎥⎣ ⎦

r r r                     (2)

with the “effective” potential veff (r) including 
following terms,  

( )( ) ( ) ( )eff ext xcv v d vρ ′
′= + +

′∫
rr r r r

r - r
    (3) 

where veff(r) and vext(r) signify the effective  and 
external potentials respectively. Exact form of 
exchange-correlation (XC) functional remains  
unknown  as yet  and its  accurate  form is necessary 
for description of real interacting systems (such as 
binding properties). Numerous approximations 
have been suggested for this and development of 
improved functionals has constituted one of the 
most fertile areas of research for several years and 
even today. 
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For practical purposes, minimization of the 
explicit functional is not an easy or efficient task;
and hence not recommended. A far more 
attractive route is, in stead of working solely in 
terms of density, one might bring back the usual 
orbital picture in to the problem. This gives an 
appearance like a single-particle theory, albeit 
incorporating the many-body effects, in principle, 
exactly. In straightforward real-space [21–33] 
solution of this equation, the wave functions are 
sampled on a real grid through either of the 
following three representations such as finite 
difference (FD), finite element (FE) or wavelets 
where the solution is obtained in an iterative 
mechanism. The advantage is that, in all cases, 
relevant discrete differential equations offer highly 
structured, banded sparse matrices. Moreover, the 
potential operator is diagonal in coordinate space; 
Laplacian operator is nearly local (making them 
ideal candidates for linear-scaling approaches), 
and these are easily amenable to domain-
decomposition parallel implementation. One can 
use adaptive mesh refinements or coordinate 
transformations to gain further resolution in local 
regions of space. The whole molecular grid 
belongs to either uniform [30, 34, 35] or refined 
uniform grids [23–26, 29, 32, 33]. The classical 
electrostatic potential can be found using highly 
optimized FFTs or real-space multigrid algorithms. 
Using FD and FE approach, reasonably successful, 
fully numerically converged solution for self-
consistent KS eigenvalue problem of atoms/ 
molecules has been reported in literature [21–23]. In 
another development, an atom-centered numerical 
grid [22] was proposed for performing molecular-
orbital (MO) calculation. The physical domain was 
partitioned into a collection of single-center 
components with radial grids centered at each 
nucleus. Later, a high-order real-space pseudo-
potential method [34, 35] was presented for 
relatively larger systems in uniform Cartesian 
coordinates. In an orthogonal 3D mesh, an mth order 
FD expansion of the Laplacian can be written as,   

( )
2

2 2
2

, ,

, , ( )
i j k

m
m

m i j k
mx y z

C x mh y z O h
x
ψ ψ +

−

⎡ ⎤∂
= + +⎢ ⎥∂⎣ ⎦
∑

        (4) 

The Hartree potential is obtained by a direct 
summation on grid by an iterative summation 
technique. FD method has been used in different
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disadvantages of PW bases are: (i) periodic
boundary conditions must be used, which is 
desirable for solids, but not so in case of clusters 
or molecules (ii) resolution of the basis is exactly  
same everywhere.  Thus for atoms and molecules 
Gaussian bases have been most successful and 
popular.  Combination of GTO and PW bases 
have also been used [39, 40], whereby KS MOs 
are expanded in Gaussian bases and the electron  
density  in an augmented PW  basis. 
Most  of the modern  DFT  programs,  for routine  
calculations, typically employ the so-called 
atom-centered grid (ACG), pioneered by Becke 
[41], where a molecular grid is efficiently 
described in terms of some suitable 3D numerical 
quadratures. This is not necessarily the best 
strategy, but is a relatively simpler well-defined 
path, adopted by majority of DFT programs.  
The basic step consists of partitioning a molecular  
integral into single-center discrete overlapping 
atomic components. For an arbitrary integrand 
F(r), such a decomposition provides the value of 
integral I as, 

( ) , for M nuclei 
M

A
A

I F d I= = ∑∫ r r         (5) 

such that the atomic integrand FA, when summed 
over all nuclei, returns our original function.  
Single-center atomic contributions are denoted by 
IA=∫FA(r) dr 

( ) ( ) 
M

A
A

F F=∑ r r        (6) 

FA(r)s are typically constructed from original 
integrand by some well-behaved weight functions 
FA(r) = wAF(r). The atomic grid constitutes  of a 
tensor  product  between  radial part defined in 
terms  of some  quadrature  formulas  such  as 
Gauss-Chebyshev, Gaussian, Euler-McLaurin, 
multi-exponential numerical, etc., [42–49] and  
Lebedev angular quadratures (order as high as 131 
has been reported,  although usually much lower 
orders suffice; 59th order being the one most 
frequently used) [50–54]. Once FAs are determined, 
IAs are computed on grid as follows (in polar 
coordinates), 
 
 

flavors [27, 28, 31, 34, 35] for a number of 
interesting  ab initio  self-consistent problems  in 
clusters and  other finite systems, such as forces, 
molecular dynamics simulations, polarizabilities 
of semiconductor clusters as well for areas  
outside traditional electronic  structures. Multigrid 
methods [32, 36, 37], which accelerate the self-
consistent procedure by reducing number of grid 
points considerably, have found many  applications  
in  calculations for molecules and large condensed  
phase systems on uniform grids. Use of these in 
conjunction with adaptive grid to enhance the 
resolution [27, 38] has been studied. Convergence is 
influenced by parameters like grid spacing, 
domain size, order of representation, etc. 
Some of the shortcomings of above approaches  
are that these are non-variational and dimension 
of the Hamiltonian  matrix  is unmanageably  
large. In an alternative  approach, finite  expansion 
bases of localized one-electron  functions is 
employed, such as exponential functions (STO), 
Gaussian  type  orbitals  (GTO),  plane  waves 
(PW), wavelets, numerical basis sets, linear 
muffin-tin orbitals, delta functions or some 
suitable combinations of these. With STOs or 
other numerical orbitals, relevant multicenter  
integrals in the Hamiltonian needs to be evaluated 
numerically, while with a Gaussian basis, these 
and all other integrals required to compute the 
matrix elements of Hamiltonian, can be obtained 
analytically.  One pays a price for using the latter; 
for considerably larger number of such functions 
are required for accurate description of electronic 
states, as they do not exhibit correct behavior at 
either small or large distances from nuclei.  
Gaussian bases have been extensively used in 
quantum chemistry calculations of small and  
medium molecules, whereas PWs (frequently 
coupled with pseudopotentials to treat core 
electrons) have been most  successful for solids.  
PWs share with Gaussians the same property that 
the integrals are known analytically. However, 
unlike Gaussians, Coulomb interaction is local in 
Fourier space--hence solving Poisson’s equation, 
a very important step in any DFT calculation, is 
quite trivial in a PW basis. The two notable 
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demonstrated in detail for a modest number  of 
atoms and molecules by presenting total energy, 
energy components, orbital energy, potential 
energy curve, atomization energy for both local 
[70] and non-local Becke exchange [71]+Lee-
Yang-Parr (LYP) [72] correlation energy 
functionals. Success of these above mentioned 
functionals for various physical, chemical processes 
are well known.  However, in absence of the exact 
functional form although these provide very good 
estimates, in many occasions they behave rather 
poorly. Thus construction of more accurate 
elaborate sophisticated XC functional lies at the 
forefront of current research activity as evidenced 
by an enormous amount of literature on this. Some 
frequently used functionals in recent years are 
generalized gradient expansion, hybrid, meta or  
orbital-dependent functionals, etc. (see, for 
example, [73], for a brief review). In order to 
expand  the scope, applicability and feasibility of 
our method, we have employed two other 
relatively lesser used functionals holding good 
promise, viz., Filatov-Thiel (termed as FT97  in 
the community) [74, 75] and PBE [76]  functionals, 
which have been used in many  applications with 
quite decent  success. Detailed comparisons are 
made with the widely used GAMESS quantum 
chemistry program [77] (grid-based method in 
ACG and gridless method), and wherever possible, 
with experimental results as well. While this work 
exclusively deals with pseudopotential studies, 
full calculations may be investigated in future 
communications. The article is organized as 
follows. Section II gives a brief summary of the 
methodology. A discussion on our results is 
presented in Section IV, while we end with a few 
concluding remarks in Section V. 
 
II. METHODOLOGY AND 
COMPUTATIONAL CONSIDERATIONS 
Details of this method has been published  
elsewhere [63–65]; here we summarize  only the 
essential steps. Our starting point is the single-
point KS equation for a many-electron system, 
which, under the influence of pseudopotentials, 
can be written as (henceforth atomic units employed 
unless otherwise mentioned), 

21
2 ( ) [ ]( ) [ ]( ) ( ) ( ).p

ion H xc i i iv v vρ ρ ψ εψ⎡ ⎤− ∇ + + + =⎣ ⎦r r r r r
                                                             (8)

 

  
 
 

where  wrad   p ,  wang
q  signify radial, angular weights 

respectively with P,Q points (total number of 
points being P×Q). Usually angular part is not 
further split into separate θ, φ contributions as 
surface integrations on a sphere can be done 
numerically quite easily accurately by the help of 
available highly efficient algorithms. Also angular 
integration has been found to be much improved  
by Lobatto scheme [44]. Many variants of this 
integration scheme have been proposed thereafter, 
mainly to prune away any extraneous grid points, 
which is much desirable and useful. Integration by 
dividing whole space and invoking product Gauss 
rule [55] has been suggested as well. A variational 
integration scheme [56] divides molecular space 
into three different regions such as atomic 
spheres, excluded cubic region and interstitial 
parallelepiped.  In a Fourier transform Coulomb 
and multi-resolution technique, both Cartesian 
coordinate grid (CCG) and ACG were used  
[57–59]; former divides Gaussian shell pairs into 
“smooth” and “sharp” categories on the basis of 
exponents while latter connects these two by 
means of a divided-difference polynomial 
interpolation to translate density and gradients  
from latter to former.  Among other methods, a 
partitioning scheme [60], linear scaling [61] and 
adaptive integration schemes [46, 60, 62] are 
worth mentioning. 
The purpose of this article is to present an 
alternate DFT method for atoms and molecules by 
using a linear combination of GTO expansion for 
the KS molecular orbitals within CCG solely 
[63–65], that has been developed by this author 
during the past three years.  No auxiliary basis set 
is invoked for charge density.  Quantities such as 
localized atom-centered basis functions, MOs, 
electron density as well as classical Hartree and 
non-classical XC potentials are constructed on the 
3D real grid directly. A Fourier convolution method, 
involving a combination of FFT and inverse FFT 
[66, 67] is used to obtain the Coulomb potential 
quite accurately and efficiently. Analytical one-
electron Hay-Wadt-type effective core potentials 
[68, 69], which are made of sum of Gaussian type 
functions, are used to represent the inner core 
electrons whereas energy-optimized truncated 
Gaussian bases are used for valence electrons. The 
validity and performance of our method is  
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KS MOs { }( ) ,i
σψ r  σ = α, β are linearly expanded 

in terms of a set of K known basis functions as, 

1
( ) ( ),    1,2, , ,

K

i iC i Kσ
µ µ

µ

ψ χ
=

= =∑r r K                (10)

where set { }( )µχ r  denotes the contracted 

Gaussian functions centered on constituent atoms 
while  { }iCσ

µ  contains contraction coefficients for 

the orbital ( ).i
σψ r  The above expression is exact 

for a complete set { }µχ with K=∞ and, in 

principle, any complete set could  be chosen. 
However for practical purposes, infinite basis set 
is not feasible and one is restricted to a finite set; 
thus it is of utmost importance to choose suitable 
basis functions such that the approximate  expansion  
reproduces unknown KS MOs as accurately as 
possible. The procedure is very similar to that 
applied in HF theory and more practical details 
could be found in the elegant books [78–80]. 
Individual spin-densities are then given by, 
 
 
 
 
 
 

In a spin-unrestricted formalism, substitution of 
energy terms in to the energy expression, followed 
by a minimization with respect to unknown  
coefficients iCσ

µ  with ρ(r) = ρα(r) + ρβ(r) and 

P = Pα + Pβ , leads to the following matrix KS 
equation, which is reminiscent of Pople-Nesbet 
equation in HF theory, 

FαCα  = SCαεα,   and   FβCβ = SCβεβ,                  (13)

with the orthonormality conditions, 

 (Cα)†SCα = 1,    and       (C
β )†SCβ  = 1 .     (14)

Here Cα, Cβ are matrices containing MO coefficients,  
S is the atomic overlap matrix, and εα, εβ are 
diagonal  matrices  of orbital eigenvalues.  Fα, Fβ  

are KS matrices corresponding to α, β spins 
respectively, having matrix elements as, 
 
 

Here v
p ion denotes the ionic pseudo-potential for 

the system as, 

                         
(9)

with  vp ion,a signifying the ion-core pseudopotential 
associated with an atom A, situated at Ra.
vH[ρ(r)] describes the classical Hartree  electrostatic 
interactions  among valence electrons, while
vXC[ρ(r)]  represents  the non-classical  XC part 
of the Hamiltonian,  which normally depends  on 
electron  density  (and  also probably  gradient  
and other  derivatives),  but not on wave functions 
explicitly. { }( ) ,i

σψ r σ = α or β, corresponds to 

the set of N occupied orthonormal MOs, to be 
determined from the solution of this equation.  
As already hinted, the so-called, linear 
combination of atomic orbitals (LCAO) ansatz is 
by far, the most popular, convenient and 
practical route towards an iterative solution of 
molecular KS equation. In this scheme, the unknown 
 

 
 
 
 

where Pσ stands for the respective density 
matrices.  Denoting the one-electron KS operator 
in parentheses of Eq. (5) by fKS, one can write the 
KS equation in following operator form, 

( ) ( ).KS
i i if ψ εψ=r r                                               (12)

This  operator  differs from another  similar Fock 
operator fHF used in HF theory,  in the sense that 
former includes all non-classical many-body  effects 
arising from electron-electron interaction through 
XC term (as a  functional  derivative  with  respect  
to density,  vxc[ρ]  = δExc[ρ]/δρ), whereas there is 
no provision for such effects in the latter. This 
represents a fairly complicated system of coupled 
integro-differential equation whose numerical 
solution is far more demanding and some details 
are mentioned in the following. 
 

1 1
( ) ( ) ( ) ( ) ( ),

N K K

i i
i

C C P
σ

σ σ σ σ
µ ν µ ν µν µ ν

µ ν µ ν

ρ χ χ χ χ∗ ∗

= =

= =∑∑∑ ∑∑r r r r r                  (11) 
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suggested in the context of STOs [85] and later 
extended to GTOs [82]. Matrix elements of XC 
potential (calculated in real-space) were evaluated 
by some suitable analytical means. 
Although this route gained some momentum and 
was quite successful for many applications, it 
suffers from some noteworthy difficulties: (i) 
many distinct fitting techniques with varied  
flavors (variational or non-variational) produce  
some inconsistency among  various implementations 
(ii) density and XC fitting constraints differ from 
method to method (iii) fitting density does not 
automatically preserve the conservation of total 
number of electrons (iv) such an approach  
considerably  complicates  the analytic  derivative  
theories.  At the outset, it may be noted that the 
main reason for such schemes was primarily due 
to a lack of efficient method for good-quality 
multi-center integrals. However, the last few 
decades has seen emergence of a large number of 
elegant efficient high-quality quadrature schemes 
for such integrals offering very accurate results 
(see, for example, [86], for a lucid review). 
Unlike the exchange integrals  in HF theory  
(which are analytically  evaluated  within  a GTO  
basis), KS  theory  involves far  more  challenging  
non-trivial  integrals  (due  to their complicated  
algebraic forms). These are not amenable to direct  
analytic route and resort must be taken to numerical 
methods. 
In this work, the basis functions and MOs are 
directly built on a real, uniform 3D Cartesian grid 
simulating a cubic box as, 

 ri  = r0  + (i — 1)hr ,  i = 1, 2, · · · , Nr ;  for 

 r ∈ {x, y, z},       (18) 

where hr , Nr  denote the grid spacing and number 
of grid points respectively (r0  = -Nr hr /2). The 
classical electrostatic repulsion as well as XC 
potentials need to be computed on the real grid.  
For finite systems, possibly the simplest and 
crudest way to compute vH(r) is by direct numerical  
integration. This, in general, does not perform 
efficiently and is feasible only for relatively  
smaller systems. The preferred option is to solve 
the corresponding Poisson equation.  An alternate 
accurate technique, found to be quite successful in
 

core ,  KSE XC
P

F H J Eα
µν

α α
µν µν µν µν

∂

∂
= = + +        and 

core .KSE XC
P

F H J Eβ
µν

β β
µν µν µν µν

∂

∂
= = + +       (15) 

Here coreHµν   represents the bare-nucleus 
Hamiltonian matrix accounting for one-electron 
energies including contributions from kinetic 
energy plus nuclear-electron attraction. Jµν  
denotes matrix elements from classical Coulomb 
repulsion whereas the third term signifies same 
for non-classical XC effects. Obviously, this last 
one constitutes the most difficult and challenging 
part of whole SCF process. 
At this stage, it is noteworthy that basis-set HF 
method scales as N4 (total number of two-electron 
integrals with N basis functions), while KS 
calculations do so no worse than N3. There have 
been attempts to develop N2

 
or N log N scaling 

algorithms by taking into effect the negligible 
overlap among basis functions involved.  In some 
earlier LCAO-MO-based KS DFT implementations 
in GTO bases [81], an auxiliary basis set (in 
addition to the one used for MO expansion) was  
introduced  to fit  (by some least  square or other  
technique)  some computationally intensive terms 
to reduce the integral overhead,  making it an N3 

process. In one such development [82–84], the 
electron density and XC potential were expanded 
in terms of two auxiliary bases fi, gj respectively 
as, 

 

                  
(16)

Here the fitted quantities are identified with 
tildes while {ai}, {bj}, the fitting coefficients, are 
determined by minimization of either a 
straightforward function of following form, 

                                  
(17) 

or Coulomb  self-repulsion of residual  density.  
Both are subject to the constraint that nor- 
malization of fitted density gives total number of 
electrons. Originally this technique was first 
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routines [90] following usual self-consistent 
procedure iteratively. The KS eigenfunctions and  
eigenvalues then give total  energies and/or  other  
quantities  in the standard manner. Convergence 
of the solution was monitored through (i) potential 
(ii) total energies and (iii) eigenvalues. Tolerance  
of 10−6 a.u., was employed for (ii), (iii), while 
10−5  a.u., for (i). 
 
III. RESULTS AND DISCUSSION 
Table I, at first, displays various quantities for a 
representative molecule Cl2 , in its ground state, at 
an  internuclear  distance  of 4.20 a.u. Non-
relativistic  energies  as well as other components  
and  total integrated  electron  density  N are 
given, for LDA XC potential  for different  CCG  
sets, as indicated by grid spacing, hr and number  
of grid points,  Nr  (r ∈ x,y,z). Several combinations 
of grid parameters were tested and finally 8 of 
them are presented here, which is sufficient to 
illustrate the general important features. Most of 
these quantities (barring Eh,Ex,Ec) are directly 
comparable with the commonly used versatile 
GAMESS computer program [77] using same 
basis function, XC potential and effective core 
potential. All the LDA calculations referred in this 
work correspond to the homogeneous electron-gas 
correlation of Vosko-Wilk-Nusair (VWN) [70]. 
The Hay-Wadt valence basis set employed here, 
splits valence orbital into inner and outer 
components described respectively by two and 
one primitive Gaussians. Reference values are  
obtained from two different options, viz., “grid” 
and “grid-free” DFT. Former uses the default 
“army” grade with Euler-McLaurin quadratures  
for radial integration and Gauss-Legendre  
quadrature for angular integration,  while the latter 
[91, 92] works through a  resolution of identity  
to facilitate evaluation of relevant molecular  
integration over functionals rather than quadrature 
grids. As the name implies there is no “grid” in 
the latter and in a sense, it is quite attractive, as 
there is no complication that arises from finite 
grid and associated error. However, there is a 
price to pay in the form of an auxiliary basis set to 
expand the identity which itself suffers from the 
same completeness problem. This table illustrates 
many important points which are explained in 
detail in [63]. Here we mention some of the most 
significant observations. 
 
 

molecular modeling and used here, involves 
conventional Fourier convolution method and 
some variants [66, 67], 

 ρ(k)  = FFT{ρ(r)}  
 vH(r) = FFT−1 {vcH(k)ρ(k).                         (19)

Here ρ(k) and vc
H(k)  represent Fourier  integrals 

of density and Coulomb interaction kernel 
respectively  in  the grid. The former is obtained  
from a discrete  Fourier  transform  of its real-
space value by standard FFT quite easily.  
Evaluation of the latter, however, is a non-trivial 
task because of the presence of singularity in real 
space and demands caution.  This is overcome by 
applying a decomposition of the kernel into long- 
and short-range interactions, reminiscent of the 
commonly used Ewald summation technique in 
condensed matter physics, 

long short

erf( r) erfc( r)( )

( ) ( ),

c
H

c c
H H

v
r r
v v

α α
= +

≡ +

r

r r
              (20)

where erf(x) and erfc(x) correspond to error 
function and its complement respectively.  Short- 
range  Fourier  integral  can be calculated  
analytically;  the long-range  contribution  can be 
obtained directly from FFT  of  real-space  values. 
There are several other routes as well available  
for classical repulsion as needed in the large-scale 
electronic  structure within  KS DFT  framework.  
More thorough account on this topic can be found 
in the review [29]. 
All one-electron contributions of Fock matrix 
including overlap, kinetic-energy, nuclear- 
electron attraction as well pseudopotential matrix 
elements are completely identical to those 
encountered in HF calculation; these are obtained  
by standard recursion algorithms [87–89].  
Corresponding two-electron matrix elements in 
real-grid are computed through direct numerical 
integration in the CCG, 

grid

( ) | ( ) | ( ) ( ) ( ) ( ).HXC x y z HXCv h h h vµ ν µ νφ φ φ φ= ∑r r r r r r

       (21)

The matrix eigenvalue problem is accurately and 
efficiently solved using standard LAPACK
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discussed above. For all sets, these either match 
completely with literature values or show a 
maximum deviation of only 0.0001-0.0007 a.u.  
Next, potential energy curves for Cl2  and HCl are 
shown for several sets along with literature  
results  in Fig. I. Total energies are calculated at  
following ranges of internuclear separation; for Cl2,  
R = 3.50 – 5.00 and for HCl, R = 1.60 – 3.10 a.u.,  
both sampled at intervals of 0.10 a.u. It is 
gratifying that in both occasions CCG results  
show very close agreement  with  reference values 
for entire  region of R.  Set D energies for Cl2 are 
quite well (higher from the literature by only 
0.0001 a.u.) up to R = 4.00 a.u., and thereafter  
shows a tendency to deviate gradually (the 
maximum  discrepancy  being quite small though; 
0.0007 a.u. for R = 5.00 a.u.). Sets G,I for Cl2  
either match completely with reference values or 
deviates by a maximum of 0.0001 a.u.  Furthermore, 
we find that our computed energies are always 
above the reference values, except in two
occasions (R = 4.00 and 4.30 for Set G). In HCl, 
all the sets produce very nice agreement with 
literature results with Set D performing best.  For 
a more complete discussion see [63]. 
After demonstrating the dependability and validity  
of this  method,  now in Table  II, a representative 
set of 5 atoms and molecules (ordered in ascending
 
 
 
 
 
 
 
 
 

First note  that Set  A shows maximum  deviation  
from reference values for all quantities 
presumably  because the box is not large enough 
to account  for all interactions  present  in the 
system. Set B, encompassing a larger box, 
expectedly offers better results than those in Set 
A. Interestingly,  Sets B,C,F produce  very similar 
results for all the quantities, as they all cover same 
dimensions;  however, results  for  the  last  two  
sets  match  more closely with each other and 
differ from Set B, which probably suffers (as 
reflected in component energies as well as N) due 
to the crudeness  of a coarser  grid.   Sets D,E both  
produce very good agreement with reference 
results for all the quantities. In order to test 
convergence, some extra calculations are done in 
a much extended grids G,H, which of course, 
produces very little change. The  above discussion 
leads us to conclude that D,E,G,H  are our four 
best results,  while the first two  are sufficiently  
accurate  for all practical  purposes.  For more of 
these on Cl2 and similar discussion on HCl, 
consult [63]. 
At this stage, a similar kind of comparison is 
made for eigenvalues of Cl2 and HCl in various  
grids keeping  same basis  function,  LDA XC 
potential  and  pseudopotentials  [63]. These are 
rather less sensitive compared to the quantities
 

Fig.  1. Potential energy curves for Cl2 (left panel) and HCl (right panel) in a.u. CCG and ACG results 
are compared for LDA XC potential. 
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be incorporated using a finite-orbital expansion 
method which helps avoiding the density 
Hessians. In the end, XC contribution of KS 
matrix is computed by the following expression, 

( )2XC f f fF dα
µν µ ν α β µ ν

α αα αβ

χ χ ρ ρ χ χ
ρ γ γ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= + ∇ + ∇ ∇⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫ r, 

                    (22)

where γαα = |▽ρα|
2, γαβ = ▽ρα·▽ρβ , γββ = |▽ρβ|

2. This 
is advantageous because f is a function only of 
local quantities ρα, ρβ and their gradients. All non-
local functionals in this work are implemented 
using the Density Functional Repository program 
[96]. 

Table III presents a comparison of our CCG  
energy components for Cl2 and  HCl at R = 4.2 
and 2.4 a.u., respectively with BLYP functional.  
A series of calculations along the lines of Table I 
produced very similar conclusion we reached 
there for the LDA case. From these numerical 
experiments, results for a few selected sets are 
given here, which is sufficient to illustrate the  
general trend. Again, reference theoretical results  
correspond  to those having  same  basis function,  
XC potential  and effective  core potentials. Both  
“grid-DFT” results  in ACG and “grid-free” DFT  
results for total energy are reported for comparison. 
To convince us,  some additional reference 
calculations  are performed for a decent  number 
of atoms/molecules in various extended radial and 
angular  grids besides the default grid of Nr, Nθ, 
Nφ  = 96, 12, 24, namely, (i) Nr , Nθ , Nφ  = 96, 36, 72 

 
 
 
 
 
 
 
 
 
 
 
 
 

orders of N) are presented to assess its 
performance for a larger set of many-electron 
systems  within the LDA framework. All the 
quantities, as above were monitored. However, in 
order to save space, only kinetic, total and 
potential energy as well as N are given and 
compared. In this and all other following  
tables, experimental geometries are taken from 
computational chemistry database [93].  These are 
all done in grid E, which has been found to be 
quite satisfactory for Cl2 and HCl. For brevity, we 
quote only the grid-DFT results for reference, 
omitting “grid-free” DFT, as we have seen earlier 
that the two generate results of very similar 
accuracy. Once again for all of these, excellent 
agreement is observed; for more details, see [63]. 
After studying the LDA XC functionals, we now 
focus into the more important and useful so-called 
non-local functionals.  Well-known problems and 
discomfitures of LDA functionals for interacting 
many-electron systems are well documented in 
numerous communications and it would be 
necessary to develop more accurate and elegant 
functionals for future application purposes. A 
frequently used and extremely successful candidate 
is the so-called BLYP [71, 72] XC potential 
having dependence on gradients and Laplacian of 
density. This is a significant improvement over 
the LDA case and consequently has found many  
chemical, physical and biological applications.  
For practical implementation, however, it is 
preferable to use an equivalent form of the BLYP 
functional containing only first derivatives of 
density, as suggested in [94]. Following [95], 
this and other gradient-dependent functionals can
 

TABLE  II. Kinetic energy, 〈T〉, potential energy, 〈V〉, total energy, E, and N for selected atoms and molecules 
(in a.u.) within LDA. CCG and ACG results are compared. 

System 〈T〉 –〈V〉 –〈E〉 N 

 CCG Ref. [77] CCG Ref. [77] CCG Ref. [77] CCG Ref. [77] 

NaH 0.56931 0.56912 1.29712 1.29697 0.72781 0.72785 1.99999 2.00005 

As 2.07461 2.07354 8.10154 8.10047 6.02693 6.02693 5.00000 4.99999 

H2S 4.90204 4.90197 16.10707 16.10698 11.20503 11.20501 8.00000 7.99989 

Br2 8.55754 8.55716 34.74793 34.74755 29.19039 29.19039 14.00000 14.00003 

MgCl2 11.62114 11.62208 42.34513 42.34621 30.72399 30.72413 16.00004 15.99957 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

case and for all practical purposes, Set A suffices. 
Further details can be found in [64]. 
As in the LDA case, next our calculated BLYP  
eigenvalues for Cl2 and  HCl (at same R values as 
in previous tables) are compared in Table IV. 
Clearly, all the eigenvalues for both molecules are
very nicely reproduced, as observed for LDA 
functionals. Excepting the lone case of 3σ levels 
(in both cases), where absolute deviation remains  
only 0.0001 a.u., Sets A,B results show a 
complete matching for all orbital energies. In the 
same vein of our LDA approach earlier, we also 
investigated total energies and other energy 
components for a broad range of internuclear 
distance of Cl2 (R = 3.5 — 5.0 a.u) and HCl 
(R = 1.5 — 3.0 a.u.) both with 0.1 a.u. interval for 
BLYP XC functional.  It is very satisfying that for 
both of them, Sets A,B practically coincide with 
the reference values for the entire range of R. For 
Cl2, maximum absolute deviations of 0.0001 and
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(ii) Nr , Nθ, Nφ  = 128, 36, 72, with three integers  
denoting  the number  of integration  points  in r, 
θ, φ directions  respectively. 
For the set of species chosen, all these grid sets 
offer results in very close agreement with each 
other. To summarize, out of 17 species, for 8 of 
them total energies remain unchanged up to 5th 
decimal place for all the grids. Very minor 
variations were observed in remaining cases 
(largest deviation in total energy occurs for 
Na2Cl2, while for all others, it remains below 
0.00007). However, as one passes from default  
grid to  (ii),  N gradually  improves. As evident, 
CCG results are again in perfect agreement with 
ACG results, as found for the LDA functional.  
Obviously Set B produces better results (absolute 
deviations being 0.00002 and 0.00000 a.u. for Cl2  
and HCl respectively) than Set A, but only 
marginally.  Note that “grid-free” and “grid”-DFT 
results differ significantly from each other in this
 

38 Amlan K. Roy 

TABLE  III. Comparison of BLYP energy components for Cl2 and HCl in CCG and ACG, in a.u. 

 Cl2 (R = 4.2 a.u.) HCl (R = 2.4 a.u.) 

Set A B Ref. [77] A B Ref. [77] 

Nr 64 128  64 128  

hr 0.3 0.2  0.3 0.2  

〈T〉 11.21504 11.21577 
  

11.21570 6.25431   6.25464 6.25458 

〈Vt 
ne〉 –83.72582 –83.72695  –83.72685 –37.29933 –37.29987 –37.29979 

〈Eh〉 36.74464 36.74501  15.86078 15.86103  

〈Ex〉 –5.29009 –5.29015  –3.01023 –3.01026  

〈Ec〉 –0.37884 –0.37892  –0.21171 –0.21174  

〈Vt
ee〉 31.07572 31.07594 31.07594 12.63884 12.63903 12.63901 

〈Enu〉 11.66667 11.66667 11.66667 2.91667 2.91667 2.91667 

〈V〉 –40.98344 –40.98434 –40.98424 –21.74382 –21.74417 –21.74411 

〈Eel〉 –41.43506 –41.43524 –41.43522 –18.40618 –18.40620 –18.40620 

〈E〉 29.76840 –29.76857 –29.76855a –15.48951 –15.48953 –15.48953b 

N 14.00006 14.00000 13.99998   8.00002   8.00000 8.00000 
aThe grid-free  DFT value is -29.74755 a.u. [77]. 
bThe grid-free  DFT  value is -15.48083 a.u. [77]. 
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and 10 molecules, total energies are found to 
be identical to those from reference values in 
5 occasions; otherwise, the maximum absolute 
deviation remains below 0.0013%. Results for 
more atoms and molecules as well as further 
observations on this can be found in [64]. 
Finally, Table VI presents the HOMO energies,  
–εHOMO and atomization energies for selected 7 
molecules in LDA and BLYP approximation, at 
their experimental geometries taken from [93].  
From the above discussion, as expected, reference 
theoretical results are practically identical to those 
obtained from current CCG work and thus omitted; 
while available experimental values [97], wherever 
possible, are quoted appropriately. Experimental 
atomization energies with asterisks denote 298°K

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0002 a.u. have been recorded from Sets B,A 
respectively. For HCl, the same remains well 
below 0.0001 a.u. only. A more thorough 
discussion is given in [64]. 
Now Table V compares various energy 
components (only the kinetic, potential and total 
energies) for a few selected atoms and molecules  
with BLYP  XC functional  (ordered in increasing 
N as we descend the  table). A smaller grid of
Nr = 64, hr = 0.4 was sufficient for atoms, whereas 
a larger grid Nr = 128, hr = 0.3 was used for 
molecules. Other energy components are omitted  
for brevity, as they  show very similar agreements  
with  literature values as observed in previous 
occasions. The overall agreement for these with 
reference values is excellent. For a set of 5 atoms
 

TABLE  V. BLYP energy components (in a.u.) and N for selected atoms, molecules with reference results.  
CCG results are compared with ACG. 

System 〈T〉 –〈V〉 –〈E〉 N 

 CCG Ref. [77] CCG Ref. [77] CCG Ref. [77] CCG Ref. [77] 

Na2 0.14723 0.14723 0.52871 0.52871 0.38148 0.38148 1.99999 2.00000 

P 2.38891 2.38890 8.78249 8.78248 6.39358 6.39358 4.99999 4.99999 

NaCl 5.83959 5.83957 21.01698 21.01694 15.17739 15.17737 8.00003 7.99999 

PH3 4.18229 4.18224 12.40101 12.40096 8.21871 8.21872 7.99999 7.99999 

H2S2 8.88238 8.88240 30.16535 30.16538 21.28297 21.28298 13.99999 13.99999 

TABLE  IV. Comparison  of BLYP  negative eigenvalues (in a.u.) of Cl2 , HCl with reference values at   
R = 4.2 and 2.4. CCG and ACG values are given. 

MO Cl2    (R = 4.2 a.u.) MO HCl  (R = 2.4 a.u.) 

Set A B Ref.  [77]  A B Ref.  [77] 

2ug 0.8143 0.8143   0.8143     2u 0.7707 0.7707 0.7707 

2uu 0.7094 0.7094 0.7094     3u 0.4168 0.4167 0.4167 

3ug 0.4170 0.4171 0.4171     1πx 0.2786 0.2786 0.2786 

1πxu 0.3405 0.3405 0.3405     1πy 0.2786 0.2786 0.2786 

1πyu 0.3405 0.3405 0.3405     

1πxg 0.2778 0.2778 0.2778     

1πyg 0.2778 0.2778 0.2778     



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

values; otherwise they refer to 0°K. Here ionization 
energies obtained from a modified Leeuwen-
Baerends (LB) exchange potential [98, 99], with 
LDA correlation is also included for comparison. 
It may be noted that LDA and GGA XC potentials 
suffer from incorrect asymptotic long-range 
behavior; thus although ground-state total 
energies of atoms, molecules, solids are obtained 
quite satisfactorily, ionization  energies and 
higher-lying states are described  rather poorly. 
The former is typically off by 30–50% from 
experimental results.  Note that our long-term 
objective is to investigate the feasibility and 
applicability of this method for dynamical studies 
such as laser-atom/molecule interaction through 
such effects as multi-photon ionization, high-order
harmonic generation, photo-ionization, photo-
emission, photo-dissociation, etc., within a TDDFT 
framework. This is a very active, fascinating and 
challenging area of research from both 
experimental and theoretical point of view. These 
processes offer a host of important, fundamental  
physical  and  chemical  phenomena  occurring  in  
such  systems  and  also they have found diverse 
practical applications (see, for example, 
[100–105]). For such studies, it is necessary that 
both ionization energies and higher levels be 
approximated as accurately as possible, which is 
unfortunately not satisfied by either LDA or
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

BLYP functionals. The modified LB potential 
[98, 99], ( , : ),LB

xcv α
σ α β r  containing two empirical 

parameters, seems to be a very good choice in this 
case and as such, given by, 

{ }
12 3

1
2 2

( , : ) ( ) ( )

( ) ( ) . 
1 3 ( )ln ( ) ( ) 1

LB LDA LDA
xc x cv v v

x

x x x

σ σ

σ σ σ

α
σ σ σα β α

β ρ

β

= +

+
⎡ ⎤+ + +⎣ ⎦

r r r

r r

r r r

       (23)

Here σ signifies up/down spins while the 
last term containing gradient correction is 
reminiscent of the exchange functional of [71]. 
xσ(r) = |▽ρσ(r)|[ρσ(r)]–4/3 is a dimensionless 
quantity, α = 1.19, β = 0.01. In this approximation 
of exchange, asymptotic long-range property is 
satisfied properly, i.e., LB

xcv α
σ → –1/r, r→∞.

Ionization energies obtained from LBVWN (LB 
exchange+VWN correlation), reported in Column  
4, demonstrates  its superiority over both LDA 
and BLYP functionals quite convincingly. LDA 
values are consistently lower than the corresponding 
BLYP values while LBVWN energies are lower 
and more closer to experimental values than 
both of these. Now calculated atomization energies 
in columns 6,7 show significant deviations 
from experimental results. In several occasions,
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TABLE  VI. Comparison of negative HOMO energies, –εHOMO (in a.u.) and atomization energies 
(kcals/mol) for selected molecules with LDA, LBVWN (LB+VWN) and BLYP XC functionals. 
Experimental  results [97] are also given,  wherever  possible. An asterisk  indicates 298° K values. All others 
correspond to 0°K. 

Molecule –εHOMO  (a.u.) Atomization energy (kcals/mol) 

 LDA BLYP LBVWN Expt. [97] LDA BLYP Expt. [97] 

NaBr 0.1818 0.1729 0.3057 0.3050 87.47 78.94 86.8* 

SiH4 0.3188 0.3156 0.4624 0.4042 339.43 312.02 302.6 

S2 0.2007 0.2023 0.3443 0.3438 56.75 52.47 100.8 

BrCl 0.2623 0.2537 0.4133 0.4079 44.95 25.41 51.5 

AlCl3 0.3081 0.2976 0.4603 0.4414 278.02 232.88 303.4 

P4 0.2712 0.2575 0.3964 0.3432 200.77 142.99 285.9 

PCl5 0.2825 0.2722 0.4397 0.3748 246.22 145.33 303.2 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

surprisingly LDA atomization energies are better 
than their BLYP counterparts. However, this 
should not be used to conclude the superiority of 
former over the latter, because there may be some 
cancellation of errors and also other factors such 
as more accurate basis functions, core potentials,  
etc.,  should  be taken  in to consideration. Such 
deviations are not uncommon in DFT, though. 
Even very elaborate extended basis set all-electron  
calculations on several molecules show very large 
errors in a recent work [106]. However this is an 
on-going activity and does not directly interfere 
with the main objective of this work. 
 
IV. CONCLUDING REMARKS 
We presented an alternate route for atomic/ 
molecular calculation using CCG, within the 
framework of GTO-based LCAO-MO approach to 
DFT. Although several attempts in real-space are 
known which use CCG, however, to my 
knowledge, this is the first time such studies are
made in a basis-set approach, fully in CCG. 
Accuracy and reliability of our method is 
illustrated for a cross-section of atoms/molecules 
through a number of quantities such as energy 
components, potential energy curve, atomization 
energy, ionization potential, eigenvalue, etc.  For 
a large number of species, these results virtually  
coincide with  those obtained  from other grid-
based or grid-free DFT methods available. The  
success of this approach  lies in an accurate and 
efficient treatment of the Hartree potential, 
computed by a Fourier convolution technique by 
partitioning the interaction in to long-range and 
short- range components. No auxiliary basis set is 
invoked in to the picture. Detailed comparisons 
have been made which shows that the present 
results are variationally bounded. 
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