
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multiplex signal transmission by spike waves (Part 1): 
Simulations 

ABSTRACT 
It is unclear how neurons with variable response 
properties and stochastic failures can reliably 
transmit and process information. This article 
examines signal transmission and communication 
in the neural networks as an intermediate function 
of neural networks between artificial intelligence 
(AI) and each neuron functions, and derives 
multiplex signal transmission principle by spike 
waves in the neural networks. This article (Part 1) 
presents simulations of a two-dimensional (2D) 
mesh artificial neural network. If one of the 
transmitting neuron groups is stimulated, the 
signal is propagated in the form of spike waves 
with fluctuations. The corresponding receiving 
neuron group can identify the signal after learning 
to form an asynchronous multiplex communication 
channels such as 9:9 in the simulation. The 
communication channel is composed of many 
intermediate neurons working as relays. Each 
neuron can work as an input/output (I/O) and as a 
relay element, i.e., as a multiuse unit. Grouping 
and synchronic firing is often observed in real 
neuronal networks and appears to be effective for 
stable and robust spatial multiplex communication. 
This multiplex communication pattern is similar 
to that of sound identification by the ears and 
mobile adaptive communication systems. Some of 
the experimental results validating the simulation 
model and connecting it to wet experiments of the 
succeeding article (Part 2) using cultured neuronal
  

network including spike code flow which shows 
part of spike waves, effects of using extracellular 
electrode, and an example of communication 
channels of 3:n in real cultured neuronal networks 
are also described. The results of both artificial 
neural network simulations (this Part 1) and 
multichannel recording of cultured neuronal networks 
(Part 2) support multiplex communication principle 
in the brain. 
 
KEYWORDS: natural neural network, multiplex 
communication, learning, spike wave, fluctuation 
of neuron characteristics, relay neuron. 
 
1. INTRODUCTION 
Individual neurons within neuronal networks 
communicate through action potential (spike) 
trains with highly variable kinetics (length, mean 
frequency, and temporal change in frequency or 
accommodation). These properties are determined 
by synaptic connectivity patterns, individual 
synaptic strengths, and the biophysical properties 
(excitability) of individual neurons, all of which 
are dynamically modulated by various neurochemical 
signaling and plasticity mechanisms. However, it 
is difficult to determine how the spike trains are 
encoded and recognized by receiving neurons for 
reliable communication. Furthermore, compared 
to artificial elements such as transistors, neurons 
process spike information slowly (over milliseconds) 
and are not fully reliably (i.e., are prone to spike 
failure). 
The present state of the art concerning the 
functional analysis of neural networks includes 
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(A) research on spike coding metrics [1], 
(B) spatiotemporal coding [2-6], (C) synfire chains 
[7-11], and (D) pseudo-random code analysis 
[12]. However, these analyses are generally not 
concerned with communication but rather with the 
firing behavior of the network. Thus, the basic 
properties of inter-neuronal communication remain 
to be elucidated. In cultured neuronal networks, 
various random-appearing spike trains are observed. 
Further, neurons in close proximity tend to fire in 
synchrony. However, to date, there is no satisfactory 
explanation on how these phenomena contribute 
to reliable communication. The aim of this paper 
is to derive the basic principles of communication 
in simple two-dimensional (2D) neural networks 
with fluctuating characteristics using a simulation 
protocol that corresponds to the activity profile of 
a real cultured neuronal network. Previous studies 
have implemented multiplex communication by 
cross bar-type switching in integrated circuit 
neural networks [13-15]. However, these are 
artificial hardware models that work synchronously 
without fluctuations. In these networks, links are 
established along a selected line, yielding point-
to-point connections. By contrast, in this article, 
we1 analyzed a simple 2D cultured neural network 
composed of more realistic asynchronous neurons 
with synapses that show temporal fluctuations. 
These analyses revealed a multiplex communication 
principle inherent to real neuronal networks based 
on propagation of spikes2.  
Figure 1 shows a time-shift diagram of 10.2 Hz 
magnetoencephalography (MEG) obtained in a 
previous study [16, 17] that provides a graphic 
illustration of the complex communication in the 
human brain. Note that every part of the brain can 
communicate with every other part via direct or 
indirect routes, similar to human societies that 
utilize multi-access communication tools. Therefore, 
we have previously proposed synchronous multiplex 
communication models for neural networks [18, 19]. 
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However, synchronous actions are not realistic in 
real neuronal networks. 
To investigate the mechanism of asynchronous 
information flow, we performed computer simulations 
using a 2D mesh-type neural network and 
observed the spatiotemporal properties of induced 
spike waves. These simulations confirmed that a 
network composed of integrate-and-fire model 
neurons without leakage but with fluctuating 
refractory periods and output delays provides a 
reasonable model of spike train propagation 
observed in real cultured neural networks [20, 21]. 
We first extracted natural spike code spectra [20] 
by recording spike trains from multiple electrodes 
within the cultured neuronal network and then 
extracted code spectra from 2D mesh-type neural 
network simulations [21]. By comparing these 
code spectra, we estimated the average characteristics 
of the refractory period (accepting period) and the 
output delay of cultured neurons. Further, this 
comparison confirmed that the integrate-and-fire 
neuron model without leakage provides a reasonable 
approximation of neuronal behavior as shown in 
Subsection 4.12 of Section 4. 
We have also previously shown preliminarily that 
in a neural communication network, in spite of the 
fluctuating characteristics of the neurons, remote 
receiving neurons can determine the currently 
receiving spike trains come from which stimulated 
source neurons. The classification was made by 
using an external back propagation neural network 
(BPN) classification method [22]. In these 
simulations, almost all neurons of the network are 
employed as common relay media for multiplex 
communication. Further, as shown in Subsection 
4.12.7 of Section 4 and the succeeding article 
(Part 2) (hereafter simply referred as “Part 2”) 
[23], 2:1 (or 2:2) communication and possibly 
even 3:1 (or 3:3) communication are possible in 
cultured neuronal networks using the dynamic 
time warping (DTW) method, interval matching 
 
 

1The results in this article are obtained with support of those listed in the ‘ACKNOWLEDGEMENTS’ 
section. 
2This work is presented in two parts, Part 1 and Part 2. Part 1 (current article) explains mainly about 
simulations and Part 2 (the succeeding article [23]) explains wet lab experiments. It is also an important 
feature of this research, that each wet lab experiment corresponds to the simulations and vice versa. 
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Tamura et al. [22] used BPN for a similar 
identification process in an artificial neural network. 
However, because BPN is not fully plausible in 
real neuronal networks, we applied a more simple 
series of temporal Laplacian–Gaussian (LG) 
filters, in Section 2, that have a learning function 
and behavior analogous to real neuronal networks. 
In Section 3, we present experimental results of a 
simulation showing that multiplex communication 
can be established in a neural network despite 
fluctuations in individual neuron characteristics. 
In Sections 4 and 5, we discuss our results and 
present our conclusions. 
 
2. MATERIALS AND METHODS 

2.1. Multiplex communication in artificial 
networks 
We used a 25 × 25 2D mesh-type neural network 
with directional random weights assigned to the 
connections from and to eight neighboring neurons 
in each trial (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

method, and BPN [24-26]. To assess these 
principles in real neuronal networks, evoked 
spikes were recorded using an extracellular multi-
electrode system with 64 (8 × 8) individual 
electrodes. Over each electrode, there appeared to 
be zero, one, or a few neurons. Stimulations were 
delivered by one of two electrodes (“1” and “2”), 
and we investigated which non-stimulating 
electrodes (=64-2=62) could identify “1” or “2” 
correctly using DTW, our original learning 
process, or BPN specifically for 2:1 or 2:2 
communication channels. The non-stimulating 
electrodes collect spikes from neighboring 
receiving neurons. Best results showed that 52% 
(=32/62) of non-stimulating electrodes could 
identify the stimulating electrode with significant 
accuracy (Subsection 4.12.7 of Section 4), 
whereas others demonstrated less than significant 
accuracy or no response. We also indirectly 
demonstrated identification in 3:1 or 3:3 
communication channels by combining 2:1 
communication channels. 

Figure 1. Time-shift map of 10.2 Hz MEG, for a number counting task. Gray: lag time < 5 [ms] within each 
hemisphere. Black: lag time > 10 [ms] mainly across the callosum. Dotted gray: lag time 5-10 [ms]. This example 
shows wide-range neural communication. The communication examined in this chapter is more local and occurs in a 
homogeneous neural network (a cultured neuronal network) [Clinical data]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and are equal to zero otherwise. Stimuli are 
propagated in the network as spike waves as 
shown in Figure 5. 
The 2:2 multiplex communication by spike waves 
is shown in Figure 6. If the receiving neuron 
group A’ can identify the stimulation from A 
correctly, and B’ can identify the stimulation from 
B correctly, the communication channels are 
regarded as established. 

2.1.3. Calculation for detection and communication
The receiving mechanism is a kind of pattern 
recognition, and there are several possible methods 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.1. Network configuration 
There are many possible communication channel 
types in neural networks, such as C:1 and C:C 
(Figure 3). In this article, we examined C:C type 
communication channels because establishing C:C 
communication channels requires establishing C:1. 
In our fluctuation model, the instantaneous output 
delay and accepting period values of each neuron 
during each firing event k deviate as described 
previously [27]. 

2.1.2. Stimulation 
Stimuli are delivered at time t to the transmitting 
neuron sij belonging to group si, which is composed 
of three neurons: si1, si2, and si3 (Figure 4). 
Grouping was used based on preliminary findings 
that it improved the accuracy of communication 
[22]. Let fn(t) be an excitation function such that 

fn(t) = 1 if neuron n fires at time t, where n = 1,  
           2,…, 625, t = 1, 2,…, 200,                    

           0 otherwise. 

However, for simplicity, all initial stimuli are 
delivered at time 1 for individual training of 
each channel. In case of channel i, the spikes 
transmitted from neuron group si = {si1, si2, si3} as 
the initial stimuli are expressed by 

f sij (1) = 1; j = 1, 2, 3    

16 Shinichi Tamura 

Figure 2. 2D mesh-type neural network with a simple 
flat structure, where spikes are inputted to neuron j 
asynchronously from eight neighboring neurons {i}. 

(a) C:1 

Figure 3. Communication channel types. We assessed 
only the C:C type (b) for C = 3, 6, and 9 (i.e., 3:3, 6:6, 
and 9:9 communication channels). Each neuron group 
is composed of three neurons. 

(b) C:C 

(1) 

(2) 
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Figure 4. Neuron groups and communication channel. 

 i, b ∈ {1, 2,…, C}, j ∈ {1, 2, 3}. 

Figure 5. Spike waves between 0.1 and 5.0 ms in a 25 × 25 network after the three top center 
neurons are stimulated. White indicates firing cells where FOD = FRf = 0.167, gray indicates 
cells where FOD = FRf = 2.0 [Simulation]. 
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However, the additional heavy BPN used for this 
decision in the preliminary experiment did not 
appear realistic. Therefore, we applied a detection 
algorithm based on a temporal Laplacian–
Gaussian (LG) function used to describe simple 
lateral inhibition, which is frequently observed in 
real neuronal networks. When the receiving 
neuron group rb = {rbj; j = 1, 2, 3} = {rb1, rb2, rb3} 
receives a spike train, it calculates the presence 
index (Eq. (3)) at time t from the input signal up 
to the fourth wave on the assumption that si is 
being stimulated (Figure 7). 

Qb(t) = Qb1(t) + Qb2(t) + Qb3(t).                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for this function, such as a series of Laplacian–
Gaussian filters as employed in this section, 
DTW [24], interval matching [25], BPN [26] as 
described in the preceding section, and a non-
decision method as shown in Subsection 4.8 of 
Section 4. However, the specific method is not 
essential for understanding multiplex communication. 
To evaluate the capacity of networks to communicate 
by spike waves, we established receiving neuron 
groups similar to the transmitting neuron groups 
and devised a task in which each receiving neuron 
group “decides” whether a stimulus originating 
from a transmitting neuron group is directed to it 
or not based on the first four spike waves received. 
 

(a) Spike wave expression

(b) Symbolic expression

Figure 6. 2:2 multiplex communication by fluctuating spike waves. 

(3) 
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Ebjk = Estimated arrival time in the filter window 
of the k-th spike at the j-th neuron in the b-th 
neuron group rb. 
If each spike position ubjk is well matched to the 
corresponding peak position Ebjk of the filter at 
time t, Qbj(t) is large. 

Let Qb
* = maxt Qb(t).     

If neuron group i is stimulated and Qi
* > Qb

* at the 
b-th receiving neuron group rb for all b ≠ i, then 
we regard the communication of channel i as 
successful. Otherwise, it is a failure. In C:C 
communication networks, this evaluation is made 
only from the transmitting side and not from the 
receiving side. 
Reference time t0b for the reception can be set to 
any time, e.g., time 1 [bin (=0.1 ms)] or the time 
of receipt of the first wave at the first neuron 
(j = 1) in the b-th neuron group. In asynchronous 
neural networks as in real neuronal networks, it is 
reasonable to set it to the latter because the time at 
which the stimulus was sent is unknown to the 
neurons on the receiving side. 
One advantage of detection by means of a series 
of LG filters as opposed to the spike interval 
method is that interference or noise spikes occurring 
in irrelevant positions do not affect the filter output 
method [22]. 

2.1.4. Learning 
When the communication fails, the estimated arrival 
time for channel i is modified, as in learning with 
a teacher, by 

Updated Eijk(L + 1) = αEijk(L) + (1 − α)uijk(L) 
(Learning) for j = 1, 2, 3, k = 1, 2, 3, 4,  
 

 
 
 
 
 
 
 
 
 
 
 
Each Qbj(t) is calculated as the correlation between 
the input spike train and the filter function 
according to 

Qbj(t) = ∫0T Hbj(τ) STbj(τ + t − T − t0b) dτ,      

where Hbj(τ) is a receiving correlation filter with 
duration T such that 

Hbj(τ) = LG(τ − Ebj1) + LG(τ − Ebj2) +  
LG(τ − Ebj3) + LG(τ − Ebj4) 

for b = 1,2,…,C, j = 1,2,3, τ ∈ [0,T] and 

STbj(λ) is a received spike train whose origin is t0b 
(Figure 7) such that 

STbj(λ) = δ(λ − ubj1) + δ(λ − ubj2) + δ(λ − ubj3) +  
δ(λ − ubj4),     

where δ(t) is the Dirac delta function. 
The quantity t − T − t0b in Eq. (4) is the shift 
between the origin of Hbj (τ) and that of STbj(λ) at 
the current time t. 
Then,  

Qbj(t) = LG(T − t + t0b + ubj1 − Ebj1) + LG(T − t + 
t0b + ubj2 − Ebj2) + LG(T − t + t0b + ubj3 − Ebj3) + 
LG(T − t + t0b + ubj4 − Ebj4)    

for j = 1, 2, 3,  
where 
LG(τ) = Laplacian–Gaussian function = (1 − τ2/σ2) 
exp(−τ2/2σ2), 
t0b = Reference time at the receiving neuron group b, 
ubjk = Time of the k-th spike arriving (firing) at 
neuron rbj for k = 1, 2, 3, 4 and 

Figure 7. Detection of stimulation and learning to recognize targeted signals by the receiving neuron. The first to 
fourth spike waves are received at the j-th receiving neuron in the b-th receiving neuron group. Filter output is 
calculated as the sum of Laplacian–Gaussian weights on the received spikes. Filter shape is modified according to 
the received spike positions as shown by thin lines when the b(=i)-th neuron group fails to correctly identify 
stimulation from the i-th neuron group. The decreasing effect of the origin difference t* − T − t0b is not shown. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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(b) a dispersed group Sp. In the simulations 
presented here, we used the dispersed signal 
source arrangement of (b) unless specified otherwise 
as it appeared more stable as shown below. 
These two distributions were first compared for 
the number of learning cycles necessary to attain 
the first all-channel success and 10 consecutive 
(all-channel) successes with FOD = 0.167 and C = 
9 channels. The necessary number of learning 
cycles for the first success was similar and almost 
constant irrespective of distribution for various FRf 
values. However, the number of learning cycles 
necessary for 10 consecutive successes, regarded 
as an indicator that stable signal transmission 
channels have been established in practice, was 
smaller for Sp than that for Cm. This may 
correspond to the effects of antenna diversity and 
adaptive filter reception in artificial communication 
such as cellular base stations of mobile phones 
[28-31]. Thus, hereafter, we used the dispersed 
arrangement Sp. 

3.1.3. Number of channels 
Keeping the fluctuation variance of the output 
delay constant at FOD = 0.167, we counted the 
number of learning cycles before obtaining the 
first (all-channel) communication success and the 
number necessary for 10 consecutive successes 
when changing the fluctuation variance of the 
accepting period FRf and the number of channels 
(Figure 9). Terms C3, C6, and C9 indicate the 
number of learning cycles necessary for the 
receiving neuron group to classify the transmitting 
neuron group correctly for the first time for all-
channels prefixed 3, 6, and 9, respectively. 

3.1.4. Fluctuation of the accepting period (FRf) 
The number of learning cycles necessary to attain 
the first success was similar for C3, C6, and C9. 
In other words, the number of learning cycles 
necessary to attain the first success was 
insensitive to the number of channels and the 
fluctuation variance in the accepting period 
(roughly corresponding to the refractory period) 
over this range. Thus, a loss of input spikes does 
not have a strong effect on the learning cycles 
needed for first success. Similarly, the number of 
learning cycles required before attaining 10 
consecutive successes did not change markedly 
 
 

where α is an inertia coefficient of learning fixed 
at α = 0.7 and L is the number of learning cycles. 
Training of the communication channels of C:C is 
performed cyclically (i = 1, 2,…, C, 1, 2,…, C, 1, 
2,…). In the L-th learning cycle, channels i = 1, 
2,…, C are trained. If the communication fails, 
Eijk(L) is updated as in Eq. (9). If communication 
succeeds, Eijk(L) is not updated. 
 Although there is a time difference between the 
filter origin and the receiving reference time t0b in 
the early cycle, Eijk approaches uijk (e.g., Eijk 
becomes larger in Figure 7; b = i), the time t* 
yielding the maximum value of Qb(t) is earlier 
(t* becomes smaller; t* → T + tob), and the filter 
origin (τ = 0) yielding the maximum Qb(t) 
approaches t0b as the learning proceeds. That is, 
the filter axis origin (t* - T) for peak Qb(t) 
approaches t0b adaptively when T is large enough. 
 
3. RESULTS 

3.1. Simulation 

3.1.1. Parameters 
Here, σ is set to 5 (bin), which represents the 
permissible range of spike positions of the LG 
function, and bin = 0.1 [ms], corresponding to the 
quantization unit of time. Weights between eight 
neighboring neurons are assigned randomly in 
each trial such that the ratio of positive to negative 
weights is 3:1, as in typical real neurons [21]. In 
our model, each neuron n is characterized by two 
parameters, namely, output delay and refractory 
period. Each parameter has two characteristics, 
namely, the initial intrinsic characteristic (dn and 
an, respectively; in other word “individuality”) 
and the instantaneous characteristic (Dnk and Ank, 
respectively) that varies with the firing time k. 
Each neuron is an integrate-and-fire model 
without leakage where each neuron has random 
fluctuations in integration (accepting) period and 
output delay time, with variances represented by 
FRf and FOD, respectively. The exact constitution 
of the model is not essential; rather, it is more 
important that each neuron has fluctuating 
characteristics. 

3.1.2. Spatial distribution of neuron groups 
As shown in Figure 8, we considered two types 
of neuron groups: (a) a compact group Cm and 
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Figure 8. Arrangement of neuron groups for nine channels (9:9) within a 25 × 25 2D mesh neural network. 
Examples of a transmitting neuron group (Tr) composed of 3 neurons, a receiving neuron group (Rec) composed of 
3 neurons, and other neurons in the channel groups are indicated by the same color (gray) [Simulation design]. 

(a) Compact neuron groups: Cm 

(b) Dispersed neuron groups: Sp 
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FOD values. However, many learning cycles are 
necessary to reach 10 consecutive successes when 
FOD is >0.2. Thus, fluctuation of the accepting 
period (FRf) has a weaker effect on the number of 
necessary leaning cycles than FOD. This indicates 
that the loss of spikes affects the learning/ 
communication performance less strongly than 
output delay. On the other hand, increased FOD 
decreases the success rate more strongly than 
increased FRf [27]. 
 
4. DISCUSSION 

4.1. Background 
In neuronal networks, stimulation is propagated in 
the form of spike trains, in which spikes are 
frequently lost (i.e., by failure of presynaptic 
spikes to elicit postsynaptic spikes). The timing of 
spikes also fluctuates owing to the instantaneous 
excitability state of the neuron. In other words, 
real neural networks are composed of unreliable 
neurons. However, these neural networks do work 
reliably, although it is unclear how this is 
achieved. To address this problem, we constructed 
a model using a homogeneous 2D mesh-type 
neural network composed of integrate-and-fire 
model neurons without leakage and with 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
for FRf values from 1/6 (0.167) to 2/3 (0.667). 
However, for C3-10, the number of learning 
cycles required to attain FRf = 0 was significantly 
larger than that required for FRf = 1/6 (0.167). The 
reason may be as follows. We introduced 
fluctuations as noise, which is analogous to the 
effect of a support vector machine that stabilizes 
the classification by setting the separation 
hypersurface with a well margin [32]. If the 
fluctuation is zero, this effect cannot be expected. 
If several channels are set, the spike patterns of 
the other channels act as noise (C6-10 and C9-10) 
in the proper channel. For C3-10, the number of 
different class patterns is too small (3 − 1 = 2), 
and their effects are not strong enough. This may 
be the reason that C3-10 is significantly larger 
than C6-10 and C9-10 when FRf = 0. Both C6-10 
and C9-10 of FRf = 1 were larger than those of FRf 
≤ 2/3. This may be a direct effect of the 
disturbance created by the fluctuations. However, 
C9-10 is significantly smaller than C6-10. This 
may be the result of a higher number of individual 
training events achieved by the larger number of 
different channel patterns. 

3.1.5. Fluctuation of the output delay (FOD) 
Similar to variation FRf, few leaning cycles are 
necessary to attain the first success at different 
 

Figure 9. Number of learning cycles necessary to attain the first success (C*) and 10 consecutive successes (C*-10) 
when changing the variance FRf of the instantaneous fluctuation of the accepting (refractory) period. Variance FOD of 
the fluctuation of output delay is fixed to 0.167 [bin2] (bin = 0.1 [ms]). C = number of channels (C = 3, 6, 9) in the 
25 × 25 2D mesh neural network [Simulation]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3. Differential effects of FRf and FOD 
We showed that independent signal transmission 
over nine channels is possible within a 25 × 25 2D 
mesh neural network even in the presence of 
response fluctuations. Fluctuations in the output 
delay have larger effects than fluctuations in 
the accepting (refractory) period on the number 
of learning cycles necessary to establish a 
communication channel and the recognition rate, 
possibly because, although the output delay 
directly affects output spike timing, only some of 
the spikes from neighboring neurons in the 
integration (accepting) period may be lost owing 
to fluctuations of the accepting period. In other 
words, loss of spikes is not as crucial for spatial 
multiplex communication because multiple 
communication routes compensate for local 
failures in any one transmission route. Moreover, 
multiplex communication also compensates for 
fluctuations in the spike timing of each neuron.  

4.4. Effect of connection weight between 
neighboring neurons on learning 
Connection weights between neighboring neurons 
were generated randomly at the beginning of 
each trial in the simulation. Changing weights 
over the course of learning may further improve 
classification. So far, however, we have only 
confirmed that the spike propagation speed is 
increased by Hebbian learning [33]. Considering 
that real networks can rapidly retrieve large 
amounts of randomly selected data, wave 
broadcasting may be employed, as in this chapter. 
However, the effect of learning the proper 
connection weights alone appears insufficient for 
accessing or retrieving stored information. Refer 
also 4.7 which describes random connections may 
be enough for communication.  

4.5. Spatial efficiency of multiplex 
communication 
In artificial brain chips, communication can be 
improved by concentrated digital synaptic 
switching [15], but switching connections occupy 
a large amount of chip space. A feasible approach 
to save space is to connect points via spatial 
multiplexing as shown in this study. Here, 
neurons work not only as I/O components but also
  

fluctuating output delay and refractory (accepting) 
period. External stimulation is propagated 
asynchronously, like spike waves in a real neuronal 
network. The refractory period contributes to 
stabilizing the spike waves. 
In a preliminary study, we tested a BPN for 
classifying the received spike waves in a 9 × 9 
mesh neural network and showed that 9-point-to-
1-point (9:1) communication is possible [22]. 
Extension of our research has been published in 
[27], and the essential conclusions are explained 
in this article. 

4.2. Network shape and classification 
Classification was conducted using a series of LG 
filters as the behavior of these filters is thought to 
be more physiologically plausible than BPNs. 
In addition, network size was extended from 9 × 9 
to 25 × 25, and the behavior of the network was 
studied in more detail. The neural network 
transforms the input stimulation into seemingly 
random spike patterns. The BPN or the LG filter 
determines where the stimulus originated. In other 
words, neuron groups communicate by generating 
spike waves that are propagated like a broadcast 
and are recognized (using the information up 
to the fourth individual spike). These groups 
thus realize “a spatially wide area multiplex 
communication” that is robust against the fluctuations 
of relay neurons. A “spatially wide area” means 
that the spike waves propagate in a distributed 
manner via numerous relay neurons, and “multiplex 
communication” means that intermediate relay 
neurons are shared by multiple communication 
channels. In a preliminary study, no significant 
differences were found between a 2D network 
with connections to eight neighboring neurons and 
one with connections to 24 neighboring neurons 
which include two step-jumped connections. 
Therefore, the eight neighboring neuron model 
in this article may be enough for a basic study. 
Extending the network to three dimensions may 
further improve the robustness of multiplex 
communication and increase the number of possible 
communication channels because it will provide 
more possible routes between points. We conclude 
that multiplex communication contributes to the 
stability and robustness of information transmission 
in neural networks. 
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4.8. Effector driving 
In this article, pattern classification by the neural 
network is examined, which is an essential 
function of sensory systems. However, such 
classification is not necessarily required to initiate 
a response; rather, a time series of events expressed 
by spatiotemporal firing patterns of neuron groups 
in a network may be sufficient for information 
processing, where events are processed causally. 
For example, when grasping some objects by 
hand, an articulated combination of muscle 
motions is needed. In this case, the time series of 
spatiotemporal firing patterns and logical and/or 
operational fine-tuning are required rather than 
classification (Figure 10). 

4.9. Similarities to other communication media 
Here, the spike waves from local stimulation are 
propagated via multiplexed communication with 
many neurons working as relays. This communication 
style is similar to that of sound transmission in the 
atmosphere, where receiving neurons can identify 
the nature of a sound source (Figure 11). It is also 
similar to the mobile adaptive multiple-input and 
multiple-output (MIMO) system developed to 
adapt various spatial transmission characteristics 
such as multi-paths using a diversity of antennae 
[27-30] (Figure 12). It is notable that mobile 
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(and predominantly) as relay units for multiple 
communication channels. This multiuse efficiency 
will reduce the chip space required for 
communication. 

4.6. Temporal multiplexing communication 
We simulated only the situation where neuron 
groups (channels) are stimulated separately (one-
by-one) and each neuron contributes to multiple 
communication channels (spatial multiplexing). 
Further studies are required to investigate the case 
where spikes are transmitted simultaneously over 
several channels and thus can mutually interfere 
(temporal multiplexing). In principle, a series of 
LG filters working asynchronously can detect 
target spike sequences from overlapping waves. 
However, this has yet to be tested experimentally. 

4.7. Reservoir neural network 
From the viewpoint of network form, the response 
of the receiving neuron group (“Network output”) 
to the initial stimulation (“Input”) is regarded as 
a kind of pattern transformation with random-like 
connections, including recurrent processing. The 
BPN and the LG filter function present only an 
additional classification process for the response 
of the receiving neuron group, so the network 
itself may be regarded as a kind of reservoir 
neural network [34, 35]. 

Figure 10. Synkinesis driven by a spatiotemporal pattern at a receiving neuron group. Each motor neuron 
can identify its own local articulated muscle contraction command by the combination of input weights. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

communication systems have been evolving along 
a path resembling neural networks to compensate 
for different transmission media and environmental 
characteristics. Further, according to the concepts 
of MIMO, our neuron transmission groups, like 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

receiving groups, are also extendable to allow 
additional adaptation to the characteristics of 
neural networks. Thus, we can regard multiplex 
communication as a general principle of neural 
networks. 
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Figure 11. Sound transmission has the characteristics of multiplex communication, utilizing common space, 
multiple paths, and a diversity of antennae to enable identification of the source and type of sound. The neural 
network principle is similar to sound transmission where the receiving neuron group can identify what type of 
activity occurs at a remote position. The figure illustrates a 4:1 communication channel. 

Figure 12. Mobile adaptive MIMO communication system illustrated as a 1:2 channel, suggesting that our 
transmitting neuron group is also extendable and can adapt to the network characteristics to enhance performance. 
Each station has three diversity antennae for improving performance.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.10. Robustness by multiplex communication 
In our flat-type 2D mesh neural network, losing 
spikes did not significantly impair communication 
owing to the effects of the multiplexing. This 
appears consistent with recent findings from deep 
learning research showing that low-precision 
calculations, neglect of small value weights, and 
grouping (pooling) still achieve robust processing. 
Rather than local reliability of transmission 
between points, neural networks achieve total 
robustness by utilizing redundant connections. 

4.11. Effect of music for synchronization 
The communication system described here needs 
some local and global synchronization or timing 
measures in the network explicitly and implicitly. 
However, microscopically the neural network 
contains many loops which will function as a self-
oscillation circuit with relatively unstable or variable 
frequency. Therefore, it should be important to 
keep synchronization within communication range. 
On the other hand, most people are fond of music. 
There should be some positive reasons to seek for 
music and dance. The effects of music are studied 
a lot [36] from macroscopic view especially from 
the relation between body and music. Physical 
pendulum-like motion and music give stable 
rhythm and tempo as well as frequency of music 
instruments, and it may be effective to keep and 
train the synchronization among micro level 
neural network.  
Our neuron model neglected the threshold value 
to fire. However, it may be reasonable to assume 
that if the environmental electrical potential value 
such as global brain wave is changed, the 
characteristics of the neuron such as refractory 
period and output delay time will be varied 
through the threshold. It is also observed that 
there is a certain tendency of neurons firing 
continuously even after stopping the repetitive 
stimulations [37]. That is, there is a possibility 
that the music and dance contribute to the 
synchronization as outside clock for communication 
within the neuronal network of human and animals. 

4.12. Correspondence to wet experiment: 
Bridging to Part 2 (the succeeding article [23])  
A central feature of our research is the parallel 
evaluation of in silico simulations and recordings
  

from real neuronal networks. The correspondence 
between simulations and multi-electrode extracellular 
recordings is explained in the following subsections 
[21]. 

4.12.1. Neuron characteristics and distribution 
under electrodes 
It is challenging to record action potentials 
(spikes) from individual neurons using extracellular 
electrodes as most will detect multiple spikes 
from several (m) proximal neurons (Figure 13). 
Figure 14 shows an example of a spike train 
measured at each of 64 electrodes (in an 8 × 8 
array) from a real neuronal network. Although 
these look like random sequences, they are often 
pseudo-random code-like sequences. For example, 
we can observe the sequence “1101” (closed 
ellipse; code no. 1) or “1011” (ellipse with top 
crack; code no. 2) which are core components of 
M-sequences “1101000” and “1011000,” respectively 
[38]. 

4.12.2. Model of multi-electrodes on a 2D mesh 
neural network 
A multi-electrode array is modeled in Figure 15, 
where each electrode detects the activity of 
several local neurons. An example output of an 
individual electrode is shown in Figure 16. The 
response varies according to the number of 
detected neurons. We can also observe a code 
“1011,” which is a representative of the M-
sequence family. Since there are many loop 
circuits such as shift register-like circuits along 
the spike pathway, many pseudo-random sequences 
like M-sequence are generated as shown in 
Figure 17. 

4.12.3. Code flow 
Figure 18 presents pseudo-color image sequences 
depicting detected codes “1101” and “1011” from 
Figure 14 (movies are available through our 
website). These movies reveal that codes are 
flowing from the first (stimulus) electrode to the 
neighboring electrode without markedly changing 
shape. This is confirmed by statistically 
comparing the codes to those from shuffled and 
random spike trains [20]. However, correlations 
of the detected codes gradually decrease with time 
and spatial distance. Thus, the code can be used to 
track the flow of spikes or signals. 
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Figure 13. (Upper) Micrograph of cultured hippocampal neurons of a Wistar rat in a microelectrode array. Black 
rectangles indicate electrodes. (Lower) Illustration of a vertical section. Each electrode catches spikes from several 
neurons. We can observe spike trains containing code such as “1011”. Each bit (“1” or “0”) is considered from 
different neurons for short time length (short bit-width) code, since it takes more time for the same neuron to fire 
twice than the refractory period or observing window period [20] [Set up of wet experiment]. 

Figure 14. Examples of spike trains recorded from a real neuronal network using 8 × 8 multi-electrodes. The 
recording period was between 0 and 18 [ms] (horizontal axis) after the stimulation pulse was delivered (at time 0) 
from the electrode marked with a star [20]. The ellipse with top crack shows the code “1011,” and the closed ellipse 
shows “1101, with each having a bit of width more than 0.6 [ms]. In the simulation, spike of each neuron can be 
identified. On the other hand, in the wet experiment of this figure, since there are multiple neurons within each 
electrode response area, spikes from different neurons cannot be distinguished. However, since the measurement 
period is shorter than the expected refractory period (accumulation time; about 7 [ms], 70 [bins]), the number of 
spikes measured from the same neuron is usually at most one. Thus, almost all spikes arise from different neurons 
[Wet experiment]. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.12.5. Estimation of parameters and covering 
number 

By fitting the simulation to multi-electrode 
recordings from real neuronal networks, we can 
estimate a0, c, and the distribution Prob(m) of how 
many neurons (m) each electrode detects (covers), 
such that 

Squared estimation error (a0, c, {Prob(m)})  
= ||S − Ŝ||2    

is minimized, where 

Ŝ (a0, c, {Prob(m)}) = 
9

2m =
∑ Prob(m) . Sm (a0, c)  

(Estimated code spectrum)        

     
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.12.4. Code spectrum 
From 120 pseudo-random-like sequences, we 
selected 21 major (frequently occurring) codes of 
length less than 8 (bins with or without a spike 
indicated as 1 or 0) and having a spike at the 
beginning and end. Figure 19 shows an example 
of how many codes appear from the 63 non-
stimulating electrodes according to the refractory 
period a0, ratio of positive to negative weights c, 
and number of neurons m detected by the 
electrode. We call these curves (Sm) “code spectra,” 
and they can be used as functions to decompose 
an observed spectrum. In the simulation, time is 
segmented into bins of 0.1 [ms], and the accepting 
period corresponding to integration time or 
equivalently refractory period is set to 20-80 bins 
(2-8 [ms]). 
 

28 Shinichi Tamura 

Figure 15. Arrangement of 8 × 8 multi-electrodes [(1, 1), (1, 2),…, (8, 8)] on a simulated 33 × 33 2D mesh neural 
network. Each electrode acquires spikes of two to nine neurons. For example, figure “9” showing 3 × 3 block of 
neurons (○) indicated with (1, 1) shows that electrode (1, 1) collects spikes from nine neurons (covering number is 9). 
In addition, figures “3” and “4” are likewise; “2” and “5”–“8” are not shown. Connections between eight 
neighboring neurons are randomly generated with given stochastic characteristics [Simulation design]. 

(10) 

(11) 
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Figure 16. An example of simulated measurement 
from an electrode ECm when changing the covering 
number (m) of neurons at position (4, 3) after the 
stimulation. Circles ● and triangle Δ correspond to 
“1” and “0” of the pseudo-random code “1011,” 
respectively. Horizontal axis shows the elapsed time 
after the electrode (1, 4) was stimulated [Simulation]. 

Figure 17. Stimulation added to top of the left-hand-
side neuron is propagated along the main route with 
high weights (solid lines) to electrode EC4. However, 
it propagates also on the sub-routes, including loops. 
Then, the original stimulation is propagated as 
repeating spike waves through main routes as well as 
sub-routes. Since the routes include loops as shown 
with closed loop arrow, pseudo-random codes are often 
observed within the repeating spike waves. 

Figure 18. Serial images of the simple pseudo-random sequences (code) “1011” (spot with white ‘•’), “1101” (spot 
without mark), and both superimposed (spot with “+”) observed at each electrode of an 8 × 8 channel array 
underlying a cultured neuronal network. Bit lengths are 0.6-3.0 [ms], and the time of post stimulation is shown at the 
top right of each panel. 
Moving color images of these patterns are available at ‘http://www.nbl-technovator.jp/NBL_Tech/paper/CodeFlowFig8.pdf’ 
From these serial images, it can be seen that the codes are flowing without substantially changing shape from the 
first (stimulation) electrode to one of the eight neighboring electrodes and then to one of the further neighboring 
electrodes. We can confirm this signal preservation statistically by comparison to shuffled and random sequences 
[Wet experiment].  
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Figure 19. Example of code spectrum components Sm for several parameters of accepting period (refractory period) 
a0 = 10 and positive and negative weight balance c = 1. The horizontal line represents code numbers (1, 2,…, 21), 
whose number of “1” in the code is 3. That is, code 1 = “111,” code 2 = “1011,” code 3 = “1101,” code 4 = “10011,” 
code 5 = “10101,”…, code 21 = “11000001” [22]. The vertical line represents the total number of codes detected 
during the first 200 [ms] after stimulation (2000 time bins of 0.1 [ms/bin]) and from 63 electrodes [Simulation]. 

Figure 20. Fitting of simulated code spectrum Ŝ to spectrum S derived from nine trial measurements of real culture 
neuronal networks (“Sample A”). The curve S shows the average number of individual spike train codes over nine 
trials detected from 63 non-stimulating electrodes in 200 [ms] following stimulation expressed in 2000 time bins of 
0.1 [ms]. The bit width of the code is 0.6-2.0 [ms] (6-20 [bins]). In principle, codes are detected with 1% time 
accuracy, although the accuracy is reduced (round error) by a considerable percentage because of the minimum unit 
of 0.1 [ms]. This curve can be considered a “signature” of spike trains. The curve Ŝ derived from simulations is the 
best fit to the real code spectrum. We obtained estimated a0 = 8 [ms], c = 2.5, and Sm probability distribution 
(Prob(2), Prob(3),…, Prob(9)) = (0.3, 0.1, 0, 0, 0, 0.05, 0, 0.55), with a normalized RMS error of 0.179. 
Consequently in this case, it is estimated that more than half will be m ≧ 9, and 30% will be m = 2, that is, there 
seems to be large variations of neuron density [Simulation and wet experiment]. 
 



 

per electrode channel. These techniques may be 
applicable for the analysis of neuronal circuits 
around electrodes. 

4.12.7. 2:n communication on cultured neuronal 
network 

In Part 2 [23], communication was examined in 
cultured neuronal networks to complement and 
confirm the in silico findings of Part 1 (this 
article). Figure 21 shows the best data for 2:n 
communication in a cultured neuronal network 
[26]. At 32 of 62 electrodes (gray), we could 
identify the received spikes as originating from 
stimulus electrode “1” or “2” with significant 
accuracy, and hence there was substantial 
correspondence between in silico results in Part 1 
and real neuronal network recordings in Part 2. 
 

9

2m =
∑ Prob(m) = 1 (Constraint)   

as shown in Figure 20. Code spectrum S and 
component code spectrum Sm are expressed as E 
and Em, respectively, in [21]. Since few spikes are 
included in Sm for m = 1, S1 is not included in the 
above calculation. 

4.12.6. Possibility of connection analysis 
The above (4.12.4) shows the adequateness of our 
network model composed of integrate-and-fire 
model neurons (a) without leakage, (b) with a 
fluctuating refractory period and output delay, and 
(c) organized as a homogeneous flat 2D mesh-
type network, as well as (d) a multi-electrode 
model that detects spikes from multiple neurons
 
 

Multiplex transmission in neural networks                                                                                                  31

Figure 21. The best data for 2:n communication within a neuronal network cultured on a 8 × 8 multi-electrode [26]. 
Overall, 32 of 62 electrodes (52%) could identify received spikes as originating from stimulation electrode “1” or “2” 
with significant accuracy [Wet experiment]. 

(12) 
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