
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ageing forecast of lithium-ion batteries for electric and 
hybrid vehicles 
 

ABSTRACT 
Reliability of energy storage devices is one of the 
foremost preoccupations in Electric Vehicles 
development. Battery ageing, i.e. the time 
dependent degradation of battery energy and 
power, depends on the in-use solicitations endured 
by the storage system. The connection between 
solicitations and battery life must be analyzed 
and modeled to match battery in-service life with 
car lifetime. Large variation in pulse duration 
and amplitude make life prediction an intricate 
problem. Consequently, the first step of the 
methodology is the definition of a test protocol 
able to define a damage notion. In case of Li-ion 
batteries, impedance rise and capacity fade 
are clearly involved in damage evaluation. The 
protocol must estimate this impact and allow a 
sensitivity study in terms of damage. This paper 
presents different methods to estimate battery 
ageing and tries to give, for each, some of the 
advantages and disadvantages that could appear 
when modeling. 
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1. INTRODUCTION 
During the last few years, Lithium-ion batteries 
became references for multiple applications, like 
spatial, communications or portable electronics. 
In a near future, and already today [1-2], these 
electrochemical energy storage systems will be 
used in electric and hybrid vehicles. In these 
 

particular types of vehicles (EV, HEV or PHEV), 
a part of energy is stored in batteries to be used 
later. The architectures of such transportation 
allow, partially or totally, decreasing of fuel 
consumption. It could be a good way to limit both 
pollution and greenhouse effect gases emissions. 
Lithium ion batteries, with high energy densities, 
are particularly adapted for this type of use. 
Unfortunately, performance of a Li-ion battery 
declines both with time and use. It is called 
ageing. 
To be able to anticipate this deterioration is very 
important for multiple reasons. The first one is the 
correct sizing of the energy storage system. 
Indeed, to reach vehicle specifications asked at the 
beginning and at the end of life, the battery, inside 
a vehicle, is generally oversized. Due to high 
prices and volume/weight of batteries, to quantify, 
as precisely as possible, dimensions is a very 
important point for car makers. A second reason is 
to understand and to limit the most impacting 
parameters on ageing. To predict impacts of each 
parameter is crucial in order to get onboard a 
more effective energy management strategy. For 
example, would a coolant system be useful inside 
the battery pack? For these reasons, and many 
others (warranty time…), to get a predictive 
model of battery ageing is important for a car 
maker. 
This paper reviews existing models and 
possibilities to forecast battery ageing of electric 
vehicles (EV), hybrid electric vehicles (HEV) or 
plug-in hybrid electric vehicles (PHEV).  
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cylindrical,…) but each component inside the 
battery is going to be degraded (Figure 1).  
Phenomena have been largely described in 
previous numerous studies [3-4] and, hence, they 
will not be completely described here. But for a 
better comprehension of the purpose, a general 
overview of today’s foremost knowledge of 
components ageing is reported here. 

2.1. Electrolyte ageing 
Common electrolytes in Lithium-ion batteries are 
made of a lithium salt (mainly LiPF6) and a 
mixture of several liquid organic solvents. These 
solvents are generally chosen among EC (ethylene 
carbonate), PC (propylene carbonate), DEC 
(diethyl carbonate) and DMC (dimethyl 
carbonate). VC (vinyl carbonate) or VEC (vinyl 
ethyl carbonate) are sometimes used, as additive, 
to increase battery life [5]. At relative low voltage, 
and in contact with negative electrodes (i.e., at 
high state of charge of the battery), partial 
reduction of the electrolyte can occur with 
production of gas [6] and/or insoluble species 
(like Li2CO3, LiF, PF5…) [7]. These chemical 
products are going to obstruct both the electrode 
and the separator pores, and will moreover “eat 
up” a part of the available lithium ions (dissolved 
in the electrolyte), leading thereby to a decrease of 
the cell capacity [8-9]. On the contrary, oxidation 
of electrolyte can also occur, at high voltage,  
and in contact with positive electrodes and
 

In the particular field of such battery electric 
vehicles (BEV), both using conditions and ageing 
mechanisms are very specific:  
• Firstly, parameters of battery solicitation are 
very complex. In particular, current profiles are 
largely non-linear (with huge and brief power 
demands or, in the contrary, energy recuperation 
when braking). Moreover, a wide temperature 
operating range is also commonly observed, 
during an entire year of use. 
• Secondly, a typical passenger car is parked 
between 80% and 95% of its time and is not 
driven. Even if the battery, in this case, is 
obviously not used, its performance slightly 
decreases upon time. It is called calendar ageing, 
opposite to cycling ageing (observed during the 
aforementioned use of the vehicle). 
An accurate battery ageing model has thus to  
take into account both cycling and calendar 
degradations. These two particularities make a 
battery ageing model for BEV not so easy to 
establish. 
 
2. Battery ageing mechanisms 
The decrease of battery properties along life and 
use is due to a lot of chemical/electrochemical 
mechanisms. These mechanisms largely depend 
on the technology used (nature of the active 
materials, choice of the electrolyte -liquid or 
polymer-, architecture -prismatic or planar or 
 
 

Figure 1. Li-ion battery during a discharge (Li+ and e- displace reversely at charging). 
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material, the polymeric PTFE or PVdF binder 
and/or the carbon based-conductive additives). 
However, we will keep in mind that ageing of 
the active material is, here, the main source of 
degradation (since the active material is present at 
more than 80%wgt in the composite electrode), 
with: structural disordering [24], partial dissolution 
[3] and/or surface modification [25]. 
 
3. Battery ageing forecast 
Battery ageing forecast is following one (or 
several) properties of a cell (power, capacity, 
resistance...), or a complete battery pack, along its 
life, according to the conditions of use. This 
prevision is based on tests (to be performed) or 
data (already obtained), and there are, obviously, 
several ways to model the evolutions of a battery. 
Ageing estimation can be grouped into three 
main approaches: physics-based, mathematical 
and fatigue models (Figure 2). 
The first approach, called here “physics-based 
models”, uses physical information inputs, like an 
empirical curve of voltage vs SOC (State Of 
Charge) or a physical measurement of ionic 
diffusion, for example. This group contains the 
electrochemical models, the empirical models and 
the empirical models + ECM (Equivalent Circuit 
Model).  
The second approach, called here “mathematical 
models”, is very different from the former one. 
This method commonly uses electrical data to link 
inputs and outputs of a battery, during its life. 
Artificial neural network models (ANN) are 
somewhat representative of multiple computational 
models.  
The last approach, called here “fatigue models”, is 
based on a mechanical view of the battery ageing. 
Actually, this method analyzes the impacts/effects 
of incremental damages on the battery lifetime, 
depending on controlled input conditions. 
In this paper, we will describe each model and 
will detail advantages/disadvantages, and also the 
ability to forecast battery ageing in function of the 
vehicle use conditions.  
 
4. Physics-based models 

4.1. Electrochemical models 
Electrochemical models are based on physico-
chemical processes. These models need multiple
  

consequently make vulnerable the lifespan of the 
cell [10-12]. 

2.2. Current collectors ageing 
Current collectors are generally made of copper, 
for negative electrode, and of aluminum, for 
positive electrode. In function of the voltage 
where the electrodes are polarized, these 
collectors can be corroded and then partially 
dissolved [13-14]. Although risk is minimal if the 
discharge end is well controlled [15], corrosion 
could lead to direct impedance increase (higher 
contact resistance between active material and 
current collector), or to indirect loss of electro-
active material (being no longer electronically 
linked to collector). 

2.3. Negative electrode ageing 
Lots of researchers have studied carbon electrode 
ageing [16-18], and, for most of them, the main 
ageing phenomenon is a modification of the 
carbon-based electrode/electrolyte interface [19]. 
Indeed, at low voltage, graphite is going to react 
with electrolyte. The decomposition products 
build up a passivating/oxide layer (that partially 
covers the electrode surface) named solid 
electrolyte interphase (SEI). This layer prevents 
(partially) the graphite surface for being more 
degraded (which can be regarded as a positive 
effect) but also lead to use up the lithium salt and 
the solvent, decreasing conductivity of the cell 
(which is a negative effect). This process occurs 
mainly at the beginning of the cell life (i.e. as 
soon as electrode and electrolyte are in contact), 
but not only. In fact, formation of the SEI is 
ongoing throughout the entire battery lifetime. 
More precise studies have been done, and it seems 
that SEI layers have a complex structure [20-23], 
still not completely unrevealed. 

2.4. Positive electrode ageing 
Several positive electrode materials are now 
available on the market (LiCoO2, LiMn2O4, 
LiFePO4...), and, for each of them, ageing 
mechanisms are somehow different and have thus 
different impacts on the observed performance 
fading [4]. The positive electrode is actually a 
hybrid-composite electrode (where inorganic and 
organic compounds are mixed together), meaning 
that ageing sources could be multiple (for 
instance, it could come from the inorganic active
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ions diffusion limitation [18], or a more complex 
limitation mode (diffusion, solvent decomposition 
kinetics or a mix of the two) [31]. Decomposition 
of organic solvent and decrease of porosity can 
also be added. More complex electrochemical 
ageing models have been then published [32-34], 
with even the possibility to distinguish between 
anodic and cathodic capacity losses. In all of these 
battery ageing models, electrolyte decomposition 
on negative electrodes is considered as the 
predominant source of damage. It is an 
approximation of real phenomena occurring in the 
electrochemical complex system, even if it would 
be difficult/ impossible to have, with this method, 
an exhaustive model. 

Disadvantages 

A first problem of this type of model is how to 
build and determine equations, parameters and 
physical laws. Aging phenomena are partly 
known, but are partly still vague. To develop 
electrochemical ageing equations with correct 
physical parameters will be thus difficult. 
Contrary to an electrical signal, here, a lot of 
parameters have to be measured and each of them 
evolves during operations but also during ageing. 
This point could be a stumbling block for a car 
maker: some battery cells are not yet available 
commercially and also not allowed to be 
dismantled. Another problem is the computation 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

equations to link electrical and physical properties 
of the cell. For example, Nernst equation can be 
used to link an electrode voltage to a local lithium 
concentration. The first Fick’s law can link 
diffusion flux of lithium ions and their 
concentration inside the cell. These models are 
often complex (see, for example, ref. [26]). They 
use, indeed, a lot of equations with partial 
derivatives and become more and more complex 
if precision in prevision is demanded. Calculation 
time is, thus, important. Moreover, electro-
chemical models can contain up to dozens of 
independent (or dependent) parameters, each one 
evolving independently (or dependently) during 
ageing, with mathematical laws and equations 
often unknown. Because of complexity of ageing 
phenomenon modeled and of the lack of 
knowledge (or calculation solving), in most of 
cases, these models have to be simplified 
compared to reality and integrate finally only one 
physical source of ageing.  
Among the electrochemical existing models there 
are, to begin, very simple ones [27-28] using 
Tafel’s equations, Fick’s laws or Butler-Volmer 
relation. However, these models do not include an 
evolution upon time and they are only behavioral 
models. In most electrochemical ageing models 
developed [29-30], formation and evolution of 
SEI is the only reaction taken into account. With 
more development, models can include lithium 
 
 

Figure 2. Different approaches of batteries ageing forecast.
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evolution of battery technologies, car makers 
would be delighted to get such a quick and easy 
evolving model.  

4.2. Empirical models 
A rapid technique, easy to establish, is to use 
ageing tests and to extrapolate results. It is known 
as empirical methods. It is commonly used, as a 
first approach, and can give rapid lifetime 
estimation. For example, Broussely uses this 
technique for calendar ageing [35-36] and 
extrapolate the results with a quite good precision 
of lithium loss, in the cell, upon time (Figure 3). 
If all the conditions stay the same upon operation, 
estimation over 10 years can be done with a 
simple lecture, providing interesting information 
impossible to get without any extrapolation. These 
models consist in a very simple approach [37-39]. 
Even if there is no explanation of phenomena, 
empiric models [38-40] show power losses, 
during calendar and cycling ageing tests, in 
function of square root of time. Of course, 
because of errors during tests and also by 
divergence with time, it is very important to 
control disparity and precision of measurements. 
For example, a study [41], on several lithium cells 
during calendar ageing, analyzes such error and 
dispersion during time. Lifespan, for a lithium-ion 
cell, is here estimated between 8 and 18 years, 
 

time: with a simple 1-dimension model and few 
partial differential equations, solutions are 
difficult to obtain and lot of time is needed. 
Complexity increases exponentially with number 
of equations and their dimensions. Computer 
resources and time needed are then very 
important. It is also a reason why numbers of 
phenomena, taken into account, are limited. 

Advantages 

Despite these disadvantages, electrochemical 
models are the most commonly used for ageing 
prevision. These types of model, by nature, are 
able to model a wide variety of solicitations and is 
not dependant of type of ageing tests made; 
allowing great flexibility of modeling (both EV 
and HEV profiles, for example). To be based on 
electrochemistry is another advantage, foundations 
are rooted on reality, on chemical reactions, and 
all parameters are measurable. These two qualities 
- flexibility and measurable parameters - can also 
lead to a third quality for a vehicle maker: 
possibility to transpose a model to another type 
(technology) of lithium cell. In theory, if the new 
cell has a similar chemistry and similar ageing 
processes, the new electrochemical model needs 
only new physical parameters: diffusion coefficient, 
particle size, electrode thickness and no need of 
long and expensive ageing tests. Due to rapid 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Example of an empirical approach: Extrapolation of 
lithium loss over time for different calendar conditions [36]. 
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More complex equivalent circuits have been 
created [45-46] to simulate, more precisely, the 
cell behavior, including more electrical components. 
Sometimes, components are totally unreal (i.e. 
with no particular real physical signification). But, 
in most of the cases (and as it should be), 
components are linked to reality, and values come 
essentially from EIS (Electrochemical Impedance 
Spectroscopy) measurements [47-48]. In that way, 
these models are physics-based: for example, in 
Figure 4, R1 represents internal resistance of the 
cell and connector, R2 and R3 represent faradaic 
processes (at both electrodes).  
These equivalent circuit models can also be used 
to predict ageing. Each single component of these 
(more or less complex) electric circuits can be 
linked to internal or external parameters, like 
temperature, current, state of charge... Thanks to 
ageing tests and EIS experiments, it is then 
possible to establish evolution laws of each 
electric parameter that composes the ECM. For 
example, EIS spectra evolve directly with number 
of cycle [49]. A very complete empirical + ECM 
model was described by Liaw [50], who reports 
evolution of each parameter of his dedicated 
ECM. For instance, in his paper, resistance is 
function of two parameters (d & e) and state of 
charge. For a solicitation, both d and e coefficients 
are measured upon ageing and extrapolated 
empirically [51]. Parameters can be extrapolated 
to predict future evolution of the lithium cell.  

Advantages and disadvantages 

Equivalent circuits are very well-known in the 
scientific community and to establish an electrical

including dispersion due to cell fabrication but 
also extrapolation errors of this empirical model 
used. 

Advantages and disadvantages 

The empirical models are easy to perform and are 
thus very often used, particularly as a first 
approach. But, because there is no explanation of 
the ageing phenomena, here, ageing tests have  
to be closed of a final use. If test conditions  
are slightly different, a new ageing test with 
extrapolation is needed. There is no flexibility. It 
is, however, possible to use this approach for  
a vehicle lifespan prediction with an ageing 
solicitation, a specific vehicle profile, corresponding 
to a large majority of vehicle use and users. 
Unfortunately, this type of profile is very difficult 
to develop due to large variety of uses (road, 
highway, valley, mountain…) and users. 
Independently, to be able to extrapolate, from  
1 year of test, to 10 or 15 years of ageing, could 
be risky: ageing phenomena can indeed change 
(more or less rapidly) with time. Extrapolation, 
based on finally few data, may lead to a prevision 
error of 40% [42]. Thus, empirical models will be 
used for a limited time of extrapolation.  
For these reasons, it seems impossible to use  
this approach for electric vehicle applications. 
Complexity and variety of vehicle solicitations are 
too important. 

4.3. Empirical models & equivalent circuit  
model 

A lithium-ion cell can be considered as an 
electrical dipole and thus be modeled with an 
ECM (Equivalent Circuit Model). It is also 
possible to model the behavior of a cell, in 
response to a specific solicitation. For example, 
voltage under a CCCV charge (Constant Current - 
Constant Voltage). These ECM are commonly 
used for capacity measurement or simple 
electrochemical characterizations [43-44]. They 
consist in an equivalent electrical circuit, made of 
various electrical components (mainly resistors, 
capacitors...) and organized in a (more or less) 
realistic way. For example, a simple ECM, 
modeling charge and discharge curves, is 
represented in Figure 4. 

Figure 4. ECM for behavior simulation of lithium cell 
[47]. 
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5. Mathematical models

5.1. Artificial neural network 
Mathematical models are different from other 
models because they are using numerical 
resolution methods. We describe here only 
artificial neural network (ANN) models, although 
a large number of other methods can also be used 
(fuzzy neural network, fuzzy logic model, neuro-
fuzzy based modeling, adaptive algorithm...) 
working, generally, in a very similar way. 
ANN is a computational model with a biological 
inspired conception. Based on neuronal network, 
this statistical approach works with input and 
output data and has also capacity to learn from 
experiences (Figure 5). Multiple ANN models 
were already used for lead-acid batteries 
estimators [52-53]. To paraphrase Parthiban [54], 
ANN modeling is essentially a “black box” 
operation, linking input to output data, using a 
particular set of non linear basis functions. For 
users, important steps to be followed to develop 
an ANN model are: 
(1) Data collection. Users collect a maximum of 
input/output data in function of what they desire 
to model. For example, in the battery field, input 
can be either temperature or current and output 
capacity.  

circuit is quite easy. In most of the cases, it is 
possible to set it up without any physicochemical 
experiment but only impedance measurements 
(EIS). Depending on user needs complexity, 
models can be adapted with a more or less 
advanced electrical circuit. This approach has the 
following advantage, compared to other solutions, 
for ageing forecasting: a behavior model is 
included and works directly, in parallel, with the 
ageing model. Parameters are updated continuously, 
all along the modeling process, to reflect 
evolutions of the battery, and it is thus possible to 
get the predicted discharge curve after 800 cycles, 
for example. Most of the time, based on physics 
reality, the electric elements of the ECM are 
extrapolated in function of the operating 
conditions and ageing. But this extrapolation is 
also based on empirical tests. Quality of ageing 
modeling, for this technique, is the same as 
empirical ones: a mathematical extrapolation of a 
curve. Empirical ECM seems not to be enough 
complex to take into account all parameters and 
complexity inherent to electric vehicle solicitations. 
In fact, it is just a better way to model a battery (in 
comparison with the empirical way used alone) 
but it still exhibits the same limitations due to 
multiple influences (occurring inside the battery) 
that are not supported. 
 

Figure 5. Scheme of fuzzy neural network, similar to ANN [54]. 
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There is no link with physics/electrochemistry 
of the system and there is absolutely no 
understanding of what really happens in the 
battery upon ageing. Hence, one only has to trust 
the mathematical algorithms, trying to link (with 
arithmetic) inputs and outputs together.  
Nevertheless, mathematical models can be used 
by the electric vehicle industry. But it means, for a 
car maker, having a large fleet of vehicles (EV, 
PHEV...) with onboard data loggers, being used to 
capture real-world fleet operations data (charge 
profile, temperature...). With few vehicles (but 
how many?) and few running years (but how 
long?), data collected will be used to train an 
ANN model and to model future battery ageing 
during the forthcoming uses. There are obviously 
three major problems for a vehicle maker: the first 
one is to build a car and a battery pack entirely 
before estimation of the battery ageing. It makes 
the model very expensive to develop and 
moreover difficult to integrate in the development 
of a vehicle. The second hard task is time. 
Collecting data will need a lot of time, and if a 
first battery pack is not satisfying, all the work has 
to be restarted. Moreover, ANN did not provide 
extrapolated data for a long term (for Mellit [60], 
4 years of colleted data lead to only 1 year of 
ageing forecast). The third problem is the 
complete opacity of the model. If after several 
years (and lots of money spent), a huge ageing 
mechanism is established, it will be without any 
intrinsic understanding and it will be thus 
impossible to generalize this observed behavior to 
any other battery pack. 
 
6. Fatigue models 
Fatigue models come from the mechanics domain, 
developed over hundreds of years. They are based 
on a totally different vision of the battery 
degradation with time: events are impacting in an 
incremental way, step by step. It is thus a heuristic 
approach; the model does not really represent 
ageing effects on a physical or chemical basis. 

6.1. Wöhler method 
The Wöhler method is also known as the cycle 
counting model or the SN method. Both of them 
are basic methods, based on a fatigue approach. 
August Wöhler worked on rail tracks and was 
investing metal fatigue during the 19th century. 
 
 

(2) Analysis and pre-processing of the data. Data 
are transformed to be analyzable by the network. 
(3) Training of the ANN. Formation of the 
artificial neural network, based on collected 
input/output data. Network is statistically built to 
match inputs and outputs in a way to minimize 
error. 
(4) Test of the trained network. During 
confirmation phase, the network trained has to be 
tested in order to be sure of its validity. 
Extrapolation (of the beginning of a second data 
series) made by the network is tested with real 
data (end of the second data series). 
(5) The ANN model is ready for simulation and, 
for instance, to predict ageing of battery according 
to inputs provided. 
For a battery, this statistical approach is used, in 
most of the cases, for SOC (State Of Charge) [55] 
or SOH (State Of Health) estimators [52, 56-57]. 
In fact, the data quantity to be collected is so 
important that the user needs a structure able to 
“learn” and process all information received. 
Several authors have developed ANN to model 
battery ageing [58-59] and studied error between 
prevision and empirical points (after the formation 
of the network). It appears that this method can be 
accurate. Unfortunately, few numbers of ageing 
simulations, for a long period (no more than 50 
cycles for Parthiban [54]), leads several authors to 
skepticism. In fact, only one publication, made by 
Mellit [60], shows a long term ageing forecast, 
using an artificial neural network. With 4 years of 
data collection, they succeeded in training an 
ANN able to extrapolate voltage and intensity for 
one year prediction. 

Advantages and disadvantages 

To sum up, there is, here, an algorithmic method 
for equations resolution, able to establish links 
between inputs and outputs. An artificial neural 
network can be trained to predict ageing of a 
battery, but needs a large quantity of data in order 
to be as precise as possible. At this time, there are 
not enough proofs to confirm the ability of ANN 
to accurately forecast battery ageing, even if 
few publications seem promising. An important 
specificity of ANN models, which could be 
actually a problem, is its “black box” approach.
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n being the number of days that has already 
passed. There are two types of equivalent SN-
curve already used to estimate battery lifetime:  

• The curve showing the number of cycles of a 
battery as a function of depth of discharge (DOD) 
until the end of lifetime (Figure 7).  

• The curve showing the lifetime of a battery as 
a function of its charging voltage or temperature. 
In case of non-monotone solicitation, the direct 
use of S-N curves is impossible because they are 
developed and built for constant-stress-amplitude 
operating conditions. That is why Palmgren [62] 
and, then, Miner [63] have developed a theory, 
known today as the Palmgren-Miner rule: 
according to this rule, the damage accumulated 
during one cycle (or one event) would cumulate 
with the previous damage. In practice, solicitation 
is divided into elemental cycles; each cycle is 
isolated and grouped with equivalent amplitude 
or period cycle. Each group of cycles is then 
impacting the lifetime in function of its 
frequency/occurrence.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

He concluded that metal failure results from 
cyclic stress accumulation during use, and not 
only static stress. Fatigue is then defined by the 
progressive damage that occurs when a material 
is subjected to cyclic loads. The Wöhler method 
comes from direct mechanical stress domain. 
August Wöhler lets his name to the well-known 
Wöhler curve (or SN-curve) representing number 
of cycles before rupture, in function of applied 
cyclic stress to the material (Figure 6). 
In a theoretical vision of the Wöhler curve, the 
curve is associated with an accumulation of 
energy which is dissipated within the material and 
leads to incremental structural changes. This method 
is still used today: lifespan of a component is 
estimated by progressive losses upon time and 
use. Transposition to battery ageing is relatively 
simple and an example is given by Wenzl [61]: a 
battery, operated in floating condition for which 
lifetime tests predict a lifetime of 10 years, i.e. 
3650 days, is considered to lose 10% of its 
lifetime each year. Lifetime prediction can be 
formulated mathematically as “proportion of 
lifetime which has been used up = n×1/3650” with
  

Figure 6. A typical Wöhler curve.
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Advantages and disadvantages 

Several authors noticed [45] that this method is 
simple and quick to implement. In most of the 
cases, battery supplier provides directly a typical 
Wöhler curve and, if no curve is provided, few 
simple ageing tests in laboratory can be 
performed. However, hypothesis made in the 
Wöhler method are, at least, questionable: there is 
no interaction between several ageing events, or 
an event will impact lifetime equally at the 
beginning or at the end of life of the system. Each 
SN-curve uses only one parameter (in general, 
depth of discharge of the battery). There is 
another limitation for using a Wöhler method for 
BEV: the vehicle use implies complicated and 
diverse solicitations. Firstly, it is quite impossible 
to discern a DOD in this type of solicitation and, 
secondly, more than one parameter is impacting 
(temperature, current, DOD...). All these reasons 
make this first fatigue model not convenient for 
battery ageing estimation. 

6.2. Weighted Ah model 
The weighted Ah model (or weighted Ah-
throughput approach) is an evolution of the 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This method of ageing evaluation, for lead-acid 
batteries, was firstly introduced in 1983 by 
Facinelli [64]. Described, with more details by 
Sauer [46], the Wöhler method is mathematically 
very simple: if NEmax

i is the number of events i 
that can occur during the lifetime of a battery until 
its failure (under the assumptions that only events 
of type i occurs) and NEi is the number of events 
that occurred during the period of observation, 
then the loss of lifetime associated with event i is: 
 
 
 
The portion of lifetime lost, during a period of 
observation, is then the sum over all types of 
events during the same period: 
 
 

The end of lifetime is reached when LL is equal to 
1. Events are defined as a simple cycle in the 
Wöhler method, and depth of discharge for this 
cycle is the impacting parameter for lithium-ion 
batteries. Each moment has to be associated to 
one event (and only one) for which a Wöhler 
curve exists. 
 

Figure 7. SN-curve applied to battery lifetime estimation. Number of 
cycles in function of depth of discharge before the end of lifetime 
[www.mpoweruk.com/life.html]. 
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With Aheff being the effective Ah-throughput of an 
event i, NEi the number of events i and wi the 
weight (or severity) associated with the event i. 
The battery is considered to fail once the effective 
Ah-throughput exceeds the total Ah-throughput of 
the battery. For example, in the model developed 
by Puls [68], the weighting factors chosen are 
temperature, time between two charges and one 
parameter associated to lower state of charge. 
These weighting factors, which represents the 
most difficult task to do in this type of model, 
could be then calculated mathematically [69] or 
in an empirical way (Figure 8). 
In general, fatigue models, are published with an 
End Of Life (EOL) criteria, for a better 
comprehension, because it represents how model 
operates (accumulation of different small losses of 
lifetime upon use). But it is also possible to 
directly model the properties and performances 
(like capacity, energy, peak power...) during use 
and life of the battery. 

Advantages and disadvantages 

Weighted Ah-throughput model is a large 
improvement of the first fatigue approach, the 
Wöhler method. By including several parameters, 
it takes into account all the multiple specificities 
of a vehicle solicitation (temperature, SOC, 
current...). Ah-throughput is also a better 
parameter than the number of cycles, because no 
real (driving profile) cycles are made during a 
 

aforementioned Wöhler method. It is also a 
fatigue model since it is based on a damage 
addition hypothesis. Here, lifetime is reduced, in 
function of the charge throughput during use and 
not in function of number of cycles. Moreover, 
this approach takes into account multiple 
parameters. An example, showing the general idea 
of this approach (for lead acid batteries) is given 
by Sauer [46]: 

• Cycling a lead-acid battery, at low SOC, 
stresses the battery more than cycling at high 
SOC. Any Ah that is charged or discharged to the 
battery needs to be weighted with a factor. 

• Cycling of a battery, while acid stratification is 
present is known to result in inhomogeneous 
current distribution all along the electrode. As a 
result, certain parts of the electrodes are more 
stressed than others. Again, the Ah throughput 
needs to be weighted with a factor, which depends 
on the degree of acid stratification. 

• Long periods without a full charge of the 
battery are known to be detrimental as well, 
because the sulphate crystals grow. This finally 
results in electrode sulphation and battery 
capacity loss. Therefore, the Ah throughput also 
needs to be weighted with a factor depending on 
the time since the last full charge was performed. 
All these parameters are included via a weighting 
factor, indicating if an event is more or less 
impacting to lifetime, comparatively to a reference 
(wi, in Equation 3). Several versions of ageing 
models using this approach for lead acid [65-66] 
and NiCd batteries [67] have been developed. 
Definition of an elemental event is important and 
users can choose among many possibilities: an 
event can be defined by a period (30 seconds...), 
by a property (one event by temperature, end of 
cycle...) or anything else (time between two 
moments with zero current...). Whatever the 
classification made, each moment has to be 
associated to one event (and only one) for which a 
Wöhler curve exists. Equation (1) from the 
Wöhler method is thus adapted and includes 
several parameters with adequate weighting factor 
[61]. 
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Figure 8. Weighting factor for bad charging counts 
[69]. 
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work properly, and consequently a long time of 
tests. Quality of ANN is still not demonstrated. 
• A simple fatigue (Wöhler) approach is 
relatively easy to establish. But modelling is 
limited by a single impacting parameter and a 
solicitation able to be divided into elemental 
cycles. That is why it cannot be convenient in the 
case of various vehicle solicitations. 
• The weighted Ah approach corrects these latter 
problems by including several parameters through 
some weighting factors. Charge throughput is also 
a better criteria than cycle, especially for a 
complex solicitation, but not possible for specific 
calendar ageing. 
All these models have obviously qualities and 
defaults. In the particular case of complex vehicle 
solicitations, few of them seem relevant. 
Electrochemical models are enough complex, but 
to identify ageing phenomena, to be able to 
measure all the physical and chemical parameters 
needed is arduous. Weighted Ah models are a 
second possibility. This fatigue approach does not 
need any chemical/physical measurements and is 
relatively simple to establish. Nevertheless, 
inherent hypothesis have to be checked before 
implementation in a predictive model. Question of 
calendar ageing, without any charge throughput, 
is also an important question. 
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