
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Topology-based correlation models for antileishmanial 
piplartine analogues 
 

ABSTRACT 
With a rapid diffusion, Leishmaniasis now appears 
as a severe tropical disease with millions of people 
affected. Currently used drugs are not devoid of 
detrimental side-effects and there is a crucial need 
for new alternative, active anti-parasitic chemicals. 
Recently, Nobrega et al. synthetized 32 analogues 
of piplartine, determined their activity against 
Leishmania amazonensis promastigote forms and 
presented a comparative molecular field analysis 
(CoMFA) treatment. Here we revisited these results 
and proposed topology-based 2D correlation models 
with special attention to robustness and predictive 
ability. From PaDEL and QSARINS softwares, a 
set of 3 descriptors was selected, and imported 
into multilinear regression and various machine 
learning approaches: partial least squares (PLS), 
projection pursuit regression (PPR), support vector 
machine (SVM with linear or Gaussian kernel) 
and three-layer perceptron (TLP, neural network 
with back-propagation algorithm). Although a 
reduced set of structural descriptors, these different 
models appeared attractive with satisfactory and 
consistent performances. The best results, obtained 
from linear SVM and three-layer perceptron, 
suggested that these models might be applied for 
screening new possible drugs. 
 
KEYWORDS: Leishmaniasis, topology descriptors, 
QSAR, machine learning, neural network, support 
vector machine. 

1. INTRODUCTION 
Tropical disease Leishmaniasis, caused by 
protozoan parasites transmitted by bites of female 
phlebotomine sandflies, now largely impacts 
about 98 sub-tropical countries in South Africa, 
Asia and South America. About 12 million people 
are severely affected by various forms of infection, 
cutaneous, mucocutaneous, or visceral (targeting 
liver and spleen) [1-2]. Currently used drugs often 
rely on antimonial derivatives but these drugs have 
severe side effects and suffer parasite resistance. 
Faced to the need for new effective drugs, 
chemoinformatics methods have been actively 
investigated with structure-based approaches, 
focusing on drug-receptor interactions and energetics 
and ligand-based methods linking, via quantitative 
structure activity (or property) relationships (QSARs, 
QSPRs), activity or property values to chemical 
features of tentative drugs [3]. On the other hand, 
it was observed that several pepper family derivatives, 
such as piplartine showed varied interesting 
antiparasitic properties, particularly regarding 
antileishmanial activity [4]. 
In this field, Nobrega et al. [1] recently presented 
the synthesis of 32 analogues of Piplartine, and 
their activity against the Leishmania amazonensis 
promastigote forms. They proposed a 3D 
structure-activity CoMFA treatment of these 
compounds, and discussed the influence of the 
structural moieties present in these chemicals. 
However predictive capability of this QSAR model 
was not deeply investigated. This prompted us to 
revisit the antiparasitic activity of these new 
compounds in 2D topology-based QSAR models 
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with particular attention paid to robustness and 
predictive ability. 2D descriptors are real structural 
invariants derived by swift calculations [5] and 
directly attainable with knowledge of the only 
molecular formula, avoiding problems related to 
the determination of the privileged (reactive) 
conformations and subsequent geometry optimisation 
by (often heavy) quantum calculations. Numerous 
applications established that these descriptors may 
reflect the most important features of molecular 
structure, even in groups of chemicals showing a 
large structural diversity [5] and lead to successful 
QSAR, QSPR models [6-9]. 
The work was here first carried out in the framework 
of OLS-MLR models (Ordinary Least Squares 
Multilinear Regression) using PaDEL [10] and 
QSARINS [11, 12] softwares. The free availability 
of these tools largely eases applications for 
predicting activity of new compounds. In addition 
to this MLR analysis, various machine learning 
approaches were further investigated. These methods 
are now largely used in QSAR/QSPR studies [13-
27], and were recently extended to model properties 
of nanoparticles [28-32]. Such approaches usually 
do not propose any explicit, directly usable formula 
for property prediction. However they offer easy 
settings, rapid training and generally guarantee to 
find the global minimum on the error surface. In 
many examples, they gave definitively improved 
performance in property (or activity) data fitting 
or prediction for new compounds. 
 
2. MATERIALS AND METHODS 
Experimental values of activity, from MTT assays, 
expressed as 50% inhibitory concentration (IC50 in 
µM) of L. amazonensis promastigote forms, were 
retrieved from Nobrega et al. [1] and converted 
into pIC50 values. Structural formulae and activities 
of the investigated chemicals are reported in Table 1. 
First of all, it must be noticed that these data 
constitute a borderline case for the development 
of a QSAR model: the data set is limited and the 
activity range is rather small: 32 compounds but, 
for 6 molecules, only an activity threshold is given. 
Activity values span only 2 log units in pIC50 with 
an error margin about 0.15 log unit on pIC50 for 
the middle of the activity range. Owing to the 
restricted extent of the data set, we limit the number 
of parameters in our models to only 3 structural 
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variables so as to maintain a ratio (number of 
samples/number of parameters) >5, the currently 
accepted threshold (Organisation for Economic 
Co-operation and Development (OECD) guidance 
instructions) [33]. For this study, focused on a 2D, 
topology-based, description of molecular 
structure, a pool of about 1100 2D structural 
descriptors were initially generated by the PaDEL 
software [10], and further incorporated as input 
variables in the QSARINS software [11] to develop 
multi linear regression models, using ordinary least 
squares method (OLS-MLR). These structural 
variables encompassed nature of atoms, 
autocorrelation vectors, elements of adjacency or 
distance matrices, E-states, etc. From this initial 
set, a preliminary pre-processing step was performed 
in QSARINS with elimination of (nearly) constant 
values, and pruning pairs of highly inter-correlated 
descriptors (R > 0.85). This led to a restricted input 
set of 88 (potentially significant) structural variables. 
A further selection was then carried out in multiple 
external validation process. For this, we defined 5 
subsets (m = 0 to m = 4). Each will be alternatively 
considered as prediction subset, while the 
remaining ones constituted the corresponding 
training set. For this, experimental activities were 
first ordered by decreasing pIC50, after elimination 
of compounds devoid of precise activity and point 
P14 (#ID27, see infra). The highest value (compound 
P20, #ID1) was systematically included in the 
considered training sets (to avoid extrapolation in 
prediction). This precaution seemed useful so as 
much the corresponding point (#ID1) was rather 
apart from the other investigated chemicals (as 
clearly evidenced on the correlation graph- vide 
infra…). The same precaution did not seem useful 
for the lowest activity value since several compounds 
exhibited similar pIC50 activity values, limiting the 
corresponding extrapolation area. The remaining 
compounds were then portioned in the five subsets 
(m = 0, 1,…4) according to their ID number (rank 
in the activity list) modulo 5. In other words, 
subset m encompasses compounds for which the 
rest of division by 5 of the ID numbers is m.  For, 
example subset m = 2 corresponded to compounds 
ID = 2, 7, 12,…, subset 3 compounds ID = 3, 8, 13… 
In other words, each subset included one every 
five compounds, regardless of structural similarity. 
This led to a rather homogeneous sampling over 
the full reactivity range for the various subsets. 
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Table 1D 
 

 

Table 1B 

Table 1. Structure and activity of the investigated compounds.  
The first column indicates structural fragments common to several compounds (cinnamic esters, amides, benzoic 
esters), the second one, the substituent groups borne by these structures, and the following ones are the 
numbering in Nobrega et al.’s work [1]; our ID number (see text) and activity expressed as pIC50 (µM). 

Table 1A 

Table 1C 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. RESULTS AND DISCUSSION 

Descriptor selection 
Examination of the selections carried out on the 
entire data set and the five subsets (m = 0 to m = 4) 
converged on the same trio of descriptors: AATS 
8i, ATSC 1p, MATS 5i (acronyms detailed in 
Table 2). MLR built separately on these variables 
ranked first for the total population, and four of the 
five investigated subsets (m = 1 to m = 4), and 
second for subset m = 0. The three variables so 
selected will be used in all subsequent treatments. 

Data Fitting (“recall”) and Predictions via 
multilinear regression 
Multi linear regression by ordinary least squares 
(OLS-MLR) is undoubtedly the most widely used 
tool in QSAR modelling treatment due to its efficient 
and straightforward implementation. Some basic 
elements of this treatment are summarized in 
Supplementary Materials. 

Data fitting 
For the 25 examined compounds of the full set, a 
satisfactory multilinear regression model was 
established between observed pIC50 values and the 
3 selected descriptors: 

pIC50 = 21.092 - 0.1316 AATS8i - 0.6729 
ATSC1p + 5.6858 MATS5i      (1) 

R2 = 0.8055 RMSE = 0.22 MAE = 0.18  

Q2loo = 0.7139 RMSE = 0.27 MAE = 0.22 

Variable selection was then independently carried 
out in parallel, on the total set of compounds (that 
may be represented as subset m = 5) and the five 
subsets m = 0 to m = 4. This was performed (in each 
case) by exhaustive exploration of all possible triples 
of variables (“All subset” MLR procedure in the 
QSARINS package) and selection of the best MLR 
in loo cross validation (best Q2 and exclusion of 
chance correlation by examination of the “Quick 
Rule” [34]). 
For this analysis, compounds P19, P31, P33-P36 
were discarded since only a reactivity threshold 
was given. Furthermore, preliminary trials showed 
that point P14 (ID27) largely deviates from the 
examined MLR recall model (in data fitting). This 
prompted us to also discard this point and work on 
a population of 25 compounds only (ID numbers 
#1 to #25). It may be remarked that this here-used 
procedure actually led to independent descriptor 
selections and external validation steps, since the 
prediction set chemicals were never involved 
during the development of each of the training 
MLR models. Although looking at first glance as 
some Leave-Some-Out process, things actually 
corresponded to a true external validation since 
the training sets (from one run to another) were 
not identical (only 66% similarity between two 
trials) and variable selection was independently 
operated on the entire reduced set of 88 
descriptors rather than adjusting correlations on 
various sets of data with a unique choice of few, 
preliminary selected, descriptors. 
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Table 2. The three selected, topology-based, 2D descriptors. 

AATS8i Averaged Broto-Moreau autocorrelation term, lag 8, weighted by the first ionisation potential. 
Autocorrelation term corresponds to the sum, on all pairs of atoms (i, j) separated by a given 
topological distance, the “lag” (here eight bonds), of the products of the property value associated 
to each atom of the pair (here the first ionization potential, “I”). 
Averaged descriptors are obtained by dividing each term by the corresponding number of 
contribution (avoiding dependence on the molecular size). 
AATS8i = ∑i

A ∑j
A δij Ii Ij with δij = 1 if atoms I and j are separated by 8 bonds, zero otherwise. A is 

the number of atoms. 
ATSC1p Centered Broto-Moreau autocorrelation- lag1-weighted by polarisabilities. 
MATS5i
  

Moran autocorrelation lag 5-weighted by the first ionization potential 
Ik = (1/Δk) ∑i

A ∑j
A (wi–ŵ) (wj-ŵ) δij / (1/A) ∑i

A (wi–ŵ)2 
(wi–ŵ) and (wj-ŵ) are the centered property values (mean ŵ), and the autocorrelation values are 
weighted by the square of the centered property value on all atoms 
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Taking into account the coefficients of these three 
selected descriptors in MLR equation (1), it was 
possible to evaluate how much each descriptor 
intervenes in the variations of calculated pIC50 
(See Sup. Mat. Figure 2). However a detailed 
analysis was difficult since activity varies only on 
2 log units. Among the most striking points, we 
could observe that the most active compound P20 
(#ID 1), where the ester oxygen is linked to a 
bicyclic system, had a very high value of MATS5i 
(about one unit higher than the other chemicals) 
and that the corresponding values of AATS8i slightly 
superior to the mean, and ATSC1p (slightly inferior) 
mutually compensated themselves. For point P36 
(ID#32); the activity (pIC50) was also calculated 
rather high (in agreement with experience) with 
AATS8i high (the two other variable taking values 
near to the mean of the set). The high values of 
MATS5i and ATSC1p for compound P35 might 
be also noted, which might explain a high predicted 
activity (although AATS8i is rather low) not 
confirmed by experiment (vide infra). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary statistical criteria are reported in 
Sup. Mat. Table 1 and the correlation between 
calculated and experimental pIC50 values is 
displayed in Figure 1. Individual activity values 
are collected in Sup. Mat. Table 2. 
The quality of the model, in data fitting, was 
quantified by the determination coefficient (R2), the 
root mean squared error (RMSE) and mean absolute 
error (MAE) [35]. Robustness is characterized by 
the leave one out cross-validated determination 
coefficient Q2 loo, with a value that must be close 
to R2. The ‘QUICK Rule’ [34] allowed for discarding 
chance correlation. This might be also confirmed 
by the low R2value (0.13) observed in Y scrambling. 
Williams’ plot [11] indicated that only compound 
#ID =1 (P20) lies outside the applicability domain. 
However this compound was correctly calculated 
and (as previously indicated) was left in training 
sets to avoid extrapolated predictions (Sup. Mat. 
Figure 1). 
The coefficient importance (according to standardized 
values) decreases in the sequence: 
MATS5i > ATSC1p > AATS8i 

Figure 1. MLR model. Plot of calculated pIC50 values vs observed ones: see equation (1) Numbers refer to compound ID. 
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that the calculated activity is consistent with the 
observed one), thus avoiding this drawback. 
Results gathered in Table 3 look globally satisfactory 
although in some cases Q2pred was low. This is 
not unexpected since, with limited prediction sets 
(20% of the population, that is, here, 5 or 4 
compounds only), a deviation for one compound 
might be heavily detrimental for the global result. 
Validity of the model will be confirmed by 
carrying out a large number of random prediction 
tests (vide infra: random MLR runs). 
In these treatments, each compound was included 
four times in learning (with quite neighbour calculated 
results on pIC50 in data fitting) and once in prediction. 
To get a more synthetic view of prediction capability, 
we gathered these predicted values (in subsets m = 0 
to m = 4) in a single file and compared it to the 
observed pIC50 (last line for every method in 
Table 3). 

Random MLR runs 
To confirm the choice of the selected descriptors, 
we carried out 2000 runs of cross validation with 
30% data left out. For a more homogeneous 
sampling, we separately considered about 13 
compounds in the more reactive half of the 
population and 12 in the less reactive part in the 
ID-ordered list of 25 compounds. From these two 
parts we randomly selected for each MLR run, 4 
compounds to build the validation group 
 

External validation 
Predictive ability of the proposed models is quantified 
by external validation [12, 36]. As previously 
said, results obtained with the 5 subsets (m = 0 to 
m = 4) using the same group of descriptors (those 
selected) constituted five external validation 
processes. Quality of these models was examined 
on R2tr on learning and for prediction R2pred (which 
indicated how well the predicted pIC50 were 
proportional to the observed values) and Q2 (in 
fact Q2-F2) which compared the errors in the 
prediction model and a “null model” evaluating 
activities as the mean of observed pIC50 for these 
compounds. Note that it had been also proposed 
that Q2 loo might constitute a good quality criterion 
for prediction in limited datasets provided its 
evaluation is included in descriptor selection [37]. 
Indeed, in the usual train/test validation procedure, 
about 20% of the data set is set apart to constitute 
the test (aka validation or prediction) set. The 
model is adjusted (determination of the coefficient 
of the MLR equation) on the remaining compounds 
(those of the training set) and its validity controlled 
on the test set compounds. Clearly this reduction 
in the number of training samples leads to a loss 
of information available to build the model, which 
may be detrimental for data sets with a limited 
number of samples. Conversely, in leave–one-out 
cross validation, only one compound is, at each step, 
considered for evaluating the model (verifying 
 

Table 3. Performance of the investigated approaches. 
The first column indicates for each method, the subsets (m = 0 to m = 4); m = 5 corresponds to the full set (25 
compounds). The three following columns rely on data fitting (R2tr, rmsetr, maetr), then prediction (R2pr, 
rmsepr, maepr, Q2pr) and loo (R2loo, rmseloo, maeloo, Q2loo). For each method, the last line corresponds to 
prediction on the gathered prediction files. Individuals’ calculated activity values are given in Sup. Mat. 
Table 2.  

 R2tr rmsetr maetr R2pr rmsepr maepr Q2pr R2loo rmseloo maeloo Q2-loo 
MLR 

0 0.853 0.20 0.15 0.682 0.37 0.30 0.301 0.749 0.26 0.20 0.747 
1 0.827 0.22 0.18 0.554 0.24 0.16 0.452 0.736 0.27 0.23 0.735 
2 0.859 0.19 0.15 0.766 0.36 0.29 0.410 0.769 0.25 0.20 0.768 
3 0.777 0.25 0.20 0.982 0.10 0.08 0.948 0.649 0.31 0.26 0.646 
4 0.824 0.22 0.17 0.686 0.24 0.24 0.632 0.726 0.28 0.22 0.745 
5 0.805 0.22 0.18 NA NA NA NA 0.715 0.27 0.22 0.715 
    0.614 0.28 0.22 0.572     
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  Table 3 continued.. 

PLS 
0 0.853 0.20 0.15 0.682 0.37 0.30 0.305 0.658 0.30 0.21 0.647 
1 0.827 0.22 0.18 0.570 0.24 0.16 0.468 0.704 0.29 0.23 0.701 
2 0.859 0.19 0.15 0.763 0.36 0.30 0.407 0.698 0.29 0.22 0.685 
3 0.777 0.25 0.20 0.981 0.10 0.08 0.949 0.631 0.32 0.26 0.629 
4 0.824 0.22 0.17 0.683 0.24 0.24 0.627 0.664 0.31 0.23 0.661 
5 0.805 0.22 0.18 NA NA NA NA 0.676 0.29 0.22 0.674 
    0.615 0.28 0.22 0.573     

PPR 
0 0.879 0.18 0.14 0.623 0.37 0.31 0.287 0.611 0.33 0.26 0.595 
1 0.865 0.20 0.16 0.499 0.30 0.22 0.133 0.468 0.40 0.29 0.444 
2 0.896 0.17 0.13 0.700 0.35 0.29 0.435 0.649 0.31 0.24 0.646 
3 0.789 0.24 0.19 0.985 0.10 0.09 0.955 0.373 0.42 0.36 0.341 
4 0.826 0.22 0.17 0.715 0.23 0.23 0.643 0.538 0.36 0.28 0.534 
5 0.823 0.21 0.16 NA NA NA NA 0.545 0.35 0.28 0.523 
    0.573 0.29 0.23 0.548     

ANN 
0 0.887 0.17 0.14 0.652 0.31 0.23 0.505 0.669 0.30 0.22 0.666 
1 0.875 0.19 0.15 0.698 0.25 0.17 0.432 0.621 0.33 0.26 0.621 
2 0.876 0.18 0.14 0.798 0.30 0.21 0.594 0.636 0.31 0.23 0.634 
3 0.844 0.21 0.16 0.957 0.12 0.08 0.933 0.485 0.38 0.30 0.478 
4 0.809 0.23 0.18 0.607 0.26 0.25 0.572 0.511 0.37 0.28 0.502 
5 0.856 0.19 0.15 NA NA NA NA 0.616 0.31 0.23 0.615 
    0.654 0.26 0.19 0.646     

SVM linear 
0 0.849 0.20 0.14 0.692 0.36 0.29 0.332 0.805 0.24 0.20 0.777 
1 0.825 0.22 0.17 0.533 0.24 0.18 0.446 0.760 0.27 0.20 0.750 
2 0.854 0.20 0.15 0.785 0.33 0.26 0.513 0.675 0.30 0.20 0.669 
3 0.769 0.25 0.21 0.956 0.16 0.15 0.867 0.669 0.30 0.26 0.659 
4 0.820 0.23 0.16 0.704 0.22 0.21 0.681 0.763 0.27 0.22 0.742 
5 0.802 0.23 0.17 NaN NaN NaN NaN 0.785 0.24 0.18 0.775 
    0.623 0.27 0.22 0.593     

SVM Radial 
0 0.918 0.15 0.12 0.736 0.37 0.33 .0.287 0.619 0.32 0.22 0.609 
1 0.914 0.16 0.12 0.996 0.17 0.15 0.727 0.497 0.40 0.27 0.447 
2 0.896 0.17 0.10 0.690 0.34 0.32 0.462 0.453 0.39 0.24 0.413 
3 0.882 0.18 0.16 0.946 0.15 0.13 0.889 0.554 0.35 0.27 0.554 
4 0.905 0.17 0.11 0.783 0.18 0.17 0.780 0.716 0.28 0.22 0.710 
5 0.901 0.17 0.13 NA NA NA NA 0.527 0.35 0.24 0.521 
    0.636 0.26 0.22 0.620     
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high activity for P36 (1.48 vs 1.70 exp. value) and 
low pIC50 (<  0.30) for P31 and P33. Strong deviations 
are observed for inactive compounds P19 and P34 
(calculated values > 0.8). It may be noted that 
these compounds had two methoxy groups on 
adjacent positions in the “variable” part of 
investigated molecules, which might induce 
supplementary interactions. For P35 the high 
calculated activity, not confirmed by experiment 
(1.72 in place of 0.18), was consistent with a high 
value of MATS5i and ATSC1p and the 
observation that the absence of a C=C linker is 
more favorable [1] to activity. However these 
situation occurred only twice in the data set, and 
supplementary information would be necessary. 
At last, it was difficult to discuss the case of 
inactive P14, calculated at pIC50 = 0.93.  
Although these results did not look quite satisfactory, 
it might be useful to note that points calculated as 
“inactive” showed low pIC50values (P31 and P33) 
and that P36 (second point in the reactivity scale) 
was correctly calculated as “active”. This might 
be of interest to, at least, discard wrong directions 
in the search for new active compounds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(8 compounds), the remaining 17 chemicals forming 
the corresponding training set. The histograms of R2 
fitting, R2 and Q2 prediction are given in Figure 2. 
The obtained values (0.827, 0.723 and 0.611 
respectively) confirm the validity of the selected 
descriptor set. Consistency of these results prompted 
us to consider that the three selected structural 
variables led to satisfactory fitting and prediction 
for the various populations studied. Presumably 
this choice would not always be the optimal one, 
when looking independently at each splitting. But 
we considered it gives a unique set of structural 
variables actually applicable to the various subsets 
and that also could be used for the other correlation 
methods we proposed via machine learning 
approaches (vide infra). 

Discarded points 
In the original data set, six compounds were only 
assigned threshold values. And we also eliminated 
(after preliminary results) compound #ID 27. So, 
it was interesting to examine what will be the 
predictions of our MLR model with the 3 selected 
descriptors. The model correctly predicted a rather 
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Figure 2. Histogram of statistical criteria R2train, R2pred, Q2pred for 2000 random MLR runs. 
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validation step, it looked here (for machine 
learning approaches) like leave-some-out cv 
(since descriptors are already selected). The 
statistical elements for these different approaches 
are collected in Table 3. Some examples of the 
obtained correlation models are presented in 
Figure 3. Individual activity values calculated in 
these methods are gathered in Sup. Mat. Table 2 
for data fitting, leave one out cross validation and 
prediction (gathering the results obtained for the 
five subsets).  
Schematically speaking, the various approaches 
give highly similar and consistent results. 
Performance in Recall (full set data fitting) with 
R2tr > 0.750 and Q2 loo > 0.6 in most cases, looked 
globally satisfactory and the low differences between 
R2tr and Q2 loo are a good indication of robustness 
of the treatment. Results are more mitigated for 
subset prediction, with some mediocre performances 
(for instance low values of Q2pred for subset 1 in 
most methods). As previously indicated, the test 
set encompasses here only 4 compounds, so that 
an important residual on one compound heavily 
handicaps the global result for the subset. Results 
on predictions, when gathered in a single file (24 
compounds with ID# 1 discarded), are more 
homogeneous (last line for each method in the 
table). 
Comparing the various proposed models, one can 
note that PLS and MLR gave nearly identical 
results. This is not surprising since the three 
selected variables are not highly correlated, and so 
necessary (also in PLS) for calculating activity. 
Projection pursuit regression (PPR), although 
satisfactory in data fitting, gives slightly inferior 
performance in loo cross validation and prediction. 
Support vector machine with a linear kernel, gives 
results very similar to MLR in recall, and in loo 
(except for subset m = 2, where however 
differences remains small) and slightly better in 
prediction. Radial SVM (exponential kernel) is 
definitely better in recall and in prediction for 
most subsets and the gathered predictions but 
clearly inferior in loo. Finally, despite of a very 
simple structure (3-1-1 units), the three layer 
perceptron (ANN) gives the best results in recall, 
prediction, and loo. 

Machine learning results 
As previously quoted, these methods are now largely 
used in QSAR/QSPR studies [13-32]. Several 
publications evidenced the efficiency of machine 
learning-based QSAR approaches, leading to 
improved results with respect to MLR analysis 
[14-19, 31, 32]. Using the same three-descriptor 
set, just selected via MLR correlation, we developed 
correlation models using partial least squares 
correlation (PLS), projection pursuit regression 
(PPR), support vector machine, with linear and 
radial kernels (SVM) and artificial neural network, 
(Three Layer Perceptron with back propagation 
algorithm, TLP). These methods have been largely 
presented in various publications [26, 27, 38-45]. 
So only their salient points will be reported in 
Supplementary Materials. 
As previously noted, we might not expect drastic 
improvement of the results since the descriptors 
used have been selected by MLR. But it might be 
interesting to observe to what extent the 
modification of the structural space introduced by 
these machine learning methods, modified and 
possibly enhanced performance, in as much as 
projections of the initial variables in a modified 
descriptor space might overemphasize or 
underestimate some structural characteristics. 
Indeed, PLS operates on some (generally limited) 
linear combinations of the original descriptors, 
PPR uses selected projections of the descriptors 
(determined by the algorithm). SVM works on 
projections of the variables in a larger dimension 
structural space thanks to kernel functions, and 
TLP splits descriptor information in several parts, 
separately weighted by connection weights, and 
further recombined before transfer. No additional 
variable selection procedure was tempted [42]. 
Calculations were performed in the framework of 
the Cran-R-Project softwares [46] with the caret 
software [47, 48] and home-written routines. 
The same methodology as that developed for 
MLR analysis was used for these machine 
learning approaches: Examination of performance 
in data fitting (full dataset, “recall”) and leave-
one-out cross validation on one hand, and on the 
other hand, calculations on the five subsets (m = 0 
to m = 4) alternatively used in train and test. Note 
that whereas for MLR-based descriptor selection, 
this process actually corresponded to an external 
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methods. A slight advantage in performance is 
observed for the three layer perceptron that 
overwhelmed the more straightforward MLR 
approach in recall and prediction. The easy 
availability of the involved descriptors, real structural 
invariants, attainable through swift calculations 
and the simplicity of the MLR or TLP models 
from this limited data set made these approaches 
attractive for activity estimation of structural 
analogues and possibly for tentative proposal of new 
potentially active chemicals.  
 
SUPPLEMENTARY MATERIALS 

Used correlation methods 

MLR 
The objective is to build a model between a dependent 
(univariate) variable yi (activity, property value…) 
and several independent variables (structural 
descriptors xi for compound i). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. CONCLUSION 
In this paper, we revisited the antileishmanial 
activity of a population of 32 newly synthesized 
analogues of piplartine, a crucial question in view 
of the large and recent diffusion of this disease. 
Several topology-based 2D correlation methods 
were developed from a common selection of three 
structural descriptors extracted with the QSARINS 
software from a large initial pool generated by the 
PaDEL software. Beside MLR analysis, various 
machine learning approaches were developed with 
R routines (partial least squares, projection pursuit 
regression, support vector machine with linear or 
Gaussian kernel, and three layer perceptron with 
back propagation algorithm).  
Special attention was paid to data fitting (“recall”), 
robustness (by cross validation) and predictive ability 
(via external validation). Consistent and satisfactory 
results were obtained by the various investigated
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Figure 3. Examples of correlations between calculated and experimental pIC50 values. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

estimation of the admissible error (roughly speaking
the diameter of the “insensitive tube” around the 
regression line, where errors can be neglected 
when building up the model). An exponential 
kernel also involves a third parameter σ: “inverse 
width” of the Gaussian. It controls the ‘weakening’ 
of the Gaussian (and so the importance of most 
remote support vectors). 
In this work, (operating on scaled descriptor values) 
we adjust them with a grid-search type procedure 
(ε varying from 0.05 to 0.40, C from 0.25 to 16 
and σ from 0.05 to 0.25) and looking for the best 
loo performance. 
Projection pursuit regression (PPR): operates 
on projections of the original variables along 
selected directions [27, 40-42]. The regression 
function, linking the property to structural variables, 
is approximated by a sum (empirically determined) 
of smooth non-linear ridge functions of these 
projections. An optimization routine based on 
cross-validation results allows for pursuing a 
sequence of projections revealing the most 
interesting data structures in the sample set. Here 
one projection was judged sufficient. 

Partial least squares 
PLS is one of the most popular approaches in 
QSARs [18, 27, 43, 45] in both regression and 
classification. PLS generates a limited set of 
orthogonal components spanning the descriptor 
space by linear combination of the original variables. 
These components are determined to best 
represent the variability in the descriptor space as 
well as in the property space [43]. 

Artificial neural network (ANN) 
Three layer perceptron encompasses three layers 
of elementary units (the neurons). The input layer, 
fed with structural descriptors transmits weighted 
values to the hidden layer units. On each hidden 
unit, these weighted inputs are summed up and 
transmitted to the next layer units through a 
transfer function. Biases can be added. The sum 
on the output unit gives the calculated activity value 
[44]. To not multiply the number of connections 
(which may lead to overfitting) we restricted the 
hidden layer to a unique neuron in order to evaluate 
the interest of the ANN in its simplest form.  
This architecture (4-1-1 units, and decay = 0.01 
for 150 steps), common for all the trials, gave the 
best results. 
 

y = X b + e, 
where X represents the matrix of the independent 
variables xi, b and e being the column vectors of 
the coefficients and residuals respectively. The b 
coefficients are determined by minimizing the 
residuals by OLS method 
b = (XT X)-1 XT y 
and the calculated response ŷ is: 
ŷ = X b 
Performance in recall (fitting all data) is 
characterized by the determination coefficient R2 

of the correlation obtained between observed 
pIC50 and the corresponding structural descriptors. 
Another important information attainable in MLR 
is the applicability domain (AD) related to 
“influential” objects: those that in training have a 
heavy importance in the definition of the model, 
and in prediction, those falling outside of this AD, 
and that must be considered with caution. In the 
leverage approach, the influence of each object on 
the regression result (its “leverage”) is given by 
the diagonal element h of the “Hat” matrix H 
H = X(XTX)-1XT 

For a study involving n training samples and p 
variables, objects with h larger than the threshold value 
h* = 3(p+1) / n are considered outside the AD. 
Williams’ plot (standardized residuals vs Hat 
diagonal values h) immediately highlights points 
outside the AD or outliers with residuals larger than 
2.5 times the standard deviation (the common norm).

Machine learning approaches 
Support vector machine (SVM): introduced by 
Vapnik [38, 39] and then largely used [26, 27] 
relies on two main ideas: the first one is to 
privilege robustness over an optimal recall, in 
view of a better predictive ability. The second one 
is to project (thanks to a kernel function) the 
initial data in a higher dimensional space where it 
may be hoped that a linear model might work better 
than in the initial data space. We used the very 
common linear kernel, K(x,x’) = x*x’, x and x’ being 
independent variables) and exponential kernel, 
K(x,x’) = exp(-σ(x-x’)2) 
The model depends on two tuneable parameters: 
the regularization constant C, trade-off between
the complexity of the model and its precision (too
large values tend to overfitting) and “epsilon”, an
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Sup. Mat. Table 1. Statistical indices for the full set 
MLR model, equation (1), QSARINS calculation. 

R2 0.806 
R2adj 0.778 
LOF 0.086 
Kxx 0.320 

DeltaK 0.117 
RMSEtr 0.223 
MAEtr 0.177 
RSSt 1.247 

CCCtr 0.892 
s 0.244 
F 29.0 

Q2loo 0.714 
RMSEloo 0.27 
MAEloo 0.22 

PRESSloo 1.84 
CCCloo 0.836 
R2Yscr 0.126 

RMSEavYscr 0.47 
Q2Yscr -0.32 

 

Sup. Mat. Table 2. Calculated pIC50 in the various investigated methods. 
Column PRED gathers for each method the predictions obtained in the different subsets.  
Remember that compound ID1 is always in training sets. 

  MLR   TLP   
ID ACT RECALL PRED LOO RECALL PRED LOO 
1 2.16 2.03  1.72 2.03  1.27 
2 1.54 1.27 1.21 1.24 1.30 1.24 1.24 
3 1.38 1.39 1.37 1.40 1.36 1.34 1.34 
4 1.12 0.87 0.86 0.85 0.90 0.81 0.87 
5 1.12 1.45 1.66 1.57 1.24 1.36 1.57 
6 1.08 1.07 1.03 1.07 1.19 1.22 1.32 
7 1.05 0.50 0.41 0.45 0.59 0.46 0.45 
8 1.04 0.97 0.95 0.95 0.99 0.98 0.98 
9 1.00 0.82 0.81 0.81 0.85 0.76 0.84 

10 0.96 0.56 0.46 0.51 0.54 0.43 0.45 
11 0.93 0.83 0.82 0.82 0.87 0.93 0.85 
12 0.90 0.83 0.79 0.83 0.82 0.80 0.81 
13 0.88 0.91 0.90 0.91 0.93 0.92 0.93 
14 0.83 1.10 1.09 1.12 1.12 1.07 1.17 
15 0.71 0.97 1.06 1.03 0.99 1.09 1.08 
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Sup. Mat. Table 2 continued.. 

16 0.59 0.55 0.57 0.55 0.62 0.63 0.62 
17 0.45 0.55 0.50 0.56 0.52 0.45 0.54 
18 0.31 0.44 0.48 0.47 0.47 0.56 0.48 
19 0.29 0.48 0.51 0.50 0.39 0.48 0.41 
20 0.25 0.32 0.29 0.32 0.26 0.26 0.26 
21 0.24 0.67 0.71 0.71 0.61 0.71 0.72 
22 0.19 0.03 -0.16 -0.07 0.23 0.16 0.32 
23 0.18 0.28 0.30 0.29 0.22 0.21 0.23 
24 0.13 0.34 0.39 0.37 0.28 0.41 0.32 
25 -0.06 0.02 -0.12 0.03 -0.02 -0.04 0.01 

  SVM Lin.  SVM Rad.  
ID ACT RECALL PRED LOO RECALL PRED LOO 
1 2.16 2.10  2.22 2.00  0.85 
2 1.54 1.32 1.27 1.30 1.20 1.10 1.17 
3 1.38 1.43 1.20 1.43 1.22 1.20 1.22 
4 1.12 0.90 0.88 0.87 0.90 0.87 0.88 
5 1.12 1.55 1.68 1.61 1.28 1.69 1.55 
6 1.08 1.03 0.98 1.02 1.08 0.92 1.02 
7 1.05 0.50 0.43 0.48 0.82 0.68 0.66 
8 1.04 0.99 0.81 0.92 1.05 1.06 1.05 
9 1.00 0.84 0.83 0.85 0.87 0.83 0.87 
10 0.96 0.51 0.47 0.51 0.55 0.47 0.51 
11 0.93 0.79 0.78 0.80 0.89 0.88 0.89 
12 0.90 0.82 0.81 0.82 0.75 0.62 0.73 
13 0.88 0.93 0.80 0.93 0.96 0.97 0.95 
14 0.83 1.14 1.13 1.17 0.99 1.08 1.14 
15 0.71 0.98 1.01 0.97 0.87 0.99 1.12 
16 0.59 0.56 0.57 0.56 0.75 0.68 0.83 
17 0.45 0.52 0.48 0.52 0.61 0.55 0.64 
18 0.31 0.37 0.49 0.37 0.47 0.57 0.48 
19 0.29 0.46 0.48 0.46 0.38 0.40 0.39 
20 0.25 0.30 0.31 0.35 0.23 0.13 0.24 
21 0.24 0.67 0.69 0.70 0.40 0.52 0.60 
22 0.19 0.05 -0.06 0.00 0.20 0.61 0.12 
23 0.18 0.26 0.30 0.26 0.26 0.27 0.26 
24 0.13 0.27 0.30 0.26 0.27 0.20 0.28 
25 -0.06 -0.06 -0.12 -0.06 -0.05 -0.22 -0.02 

  PLS   PPR   
ID ACT RECALL PRED LOO RECALL PRED LOO 
1 2.16 2.03  1.44 2.03  1.36 
2 1.54 1.27 1.21 1.24 1.22 1.11 1.13 
3 1.38 1.39 1.37 1.35 1.40 1.35 1.67 
4 1.12 0.87 0.86 0.85 0.92 0.84 0.92 
5 1.12 1.45 1.66 1.56 1.43 1.66 1.56 
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Sup. Mat. Figure 1. Williams’plot for MLR correlation (1).Numbers refer to compound ID. 

Sup. Mat. Table 2 continued.. 

6 1.08 1.07 1.04 1.07 1.05 0.99 0.56 
7 1.05 0.50 0.41 0.45 0.52 0.45 0.39 
8 1.04 0.97 0.95 0.94 0.97 0.97 0.85 
9 1.00 0.82 0.81 0.81 0.90 0.80 0.85 
10 0.96 0.56 0.46 0.51 0.57 0.46 0.52 
11 0.93 0.83 0.83 0.82 0.91 0.86 0.87 
12 0.90 0.83 0.79 0.83 0.89 0.85 0.88 
13 0.88 0.91 0.90 0.91 0.93 0.95 0.94 
14 0.83 1.10 1.09 1.12 1.04 1.03 1.07 
15 0.71 0.97 1.06 1.00 0.98 1.07 1.01 
16 0.59 0.55 0.57 0.55 0.57 0.74 0.90 
17 0.45 0.55 0.50 0.56 0.58 0.58 0.67 
18 0.31 0.44 0.48 0.47 0.42 0.47 0.47 
19 0.29 0.48 0.51 0.50 0.47 0.50 0.57 
20 0.25 0.32 0.29 0.33 0.26 0.27 0.25 
21 0.24 0.67 0.70 0.71 0.68 0.81 0.79 
22 0.19 0.03 -0.16 0.03 0.01 -0.07 -0.27 
23 0.18 0.28 0.30 0.30 0.22 0.28 0.21 
24 0.13 0.34 0.39 0.37 0.28 0.39 0.36 
25 -0.06 0.02 -0.12 0.04 0.02 0.09 0.04 



 
Sup. Mat. Figure 2. Contributions of the three descriptors in the variations of calculated pIC50. 
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