
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From finance to molecular modeling algorithms:  
The risk and return heuristic 

ABSTRACT 
While machine learning techniques have greatly 
increased molecular modeling capabilities, the 
frequent reliance on stochastic algorithms is a 
limiting factor due to slow optimization processes. 
Faster algorithms are thus sought for large scope 
projects. Nevertheless, stochastic algorithms also 
provide a distinct advantage by providing a solution 
ensemble rather than a single optimal solution. 
Producing a large ensemble of solutions is critical 
in problems where not all solution aspects are 
predictable and unpredictable properties may be 
key to ultimate success. Similar problems have been 
tackled previously before the advent of machine 
learning, in the field of finance. In 1952, Harry 
Markowitz introduced the modern portfolio theory 
(MPT), which uses the heuristics of risk and return 
to optimize a financial portfolio. In this study we 
will introduce an implementation of MPT heuristics 
in the field of protein-protein and peptide-protein 
interface design and show examples of its usage. 
 
KEYWORDS: modern portfolio theory (MPT), 
risk adjusted design (RAD), stochastic dominance 
(SD), computer design, heuristic. 
 
INTRODUCTION 
The design of novel protein-protein and peptide-
protein interfaces holds vast potential in medicinal

and agricultural biologics and remains a key goal 
for computational molecular design. Two key 
challenges are faced when attempting to accomplish 
this goal: An enormously large search space, 
requiring unrealistic computation times and 
flawed computational prediction methods that 
may “miss” many good solutions [1]. Overcoming 
these problems is critical for computational peptide/ 
protein design. 
Excessively large search spaces inhibit reaching 
optimal solutions by exhaustive search, as searches 
will not be performed within a realistic time 
frame. To overcome this, numerous stochastic 
algorithms have been developed. These methods 
began with rather simple Monte Carlo simulations 
that direct the random search space from the current 
step [2]. As time progressed, more advanced 
learning methods such as iterative stochastic 
elimination (ISE) [3] and genetic algorithms (GA) 
[4] were introduced. These methods generally 
follow the process of random sampling, followed 
by elimination of unfavorable parameters and/or 
the amplification of favorable ones. This allows 
for a much more time realistic solution convergence, 
although the need for stochastic sampling still 
remains computationally cumbersome. Algorithms 
that can also be applied deterministically, such as 
dead-end elimination (DEE) [5] have the theoretical 
ability to speed this process. However, due to the 
strict elimination criteria, they are often used 
in conjugation to stochastic algorithms [6]. 
As of today, mainstay design algorithms all 
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use stochastic sampling, which is arguably the rate 
limiting step towards convergence.  
The ability to calculate binding affinities in silico 
has not been perfected, serving as another obstacle 
to protein/peptide design. For example, the renowned 
ROSETTA energy function, used in numerous 
successes in protein and peptide design [7-9], was 
analyzed on several complexes and shown to have 
an overweighed emphasis on electrostatic over 
hydrophobic interactions [10]. An interesting 
approach towards tackling the shortcomings 
of these scoring functions focused on a multivariate 
energy funnel analysis to discern near-native from 
other conformations during docking [11], improving 
scoring resolutions indirectly. Nevertheless, a layer 
of uncertainty on computational protein/peptide 
design scoring still remains, with a significant 
portion of binding biophysics remaining 
unaccounted for. Scoring imperfections effectively 
eliminate the goal of reaching the single “global 
minimum” solution, as proposed solutions are 
merely hypotheses, with increased probabilities 
of outperforming randomly generated models. 
Solution ensembles, provided by most stochastic 
algorithms hence have an advantage, offering a set 
of hypotheses as opposed to a single one.   
Interestingly, analogous problems were encountered 
in the field of finance during the middle of the last 
century while exploring methods for investment 
portfolio optimization. Investment portfolios are 
composed of numerous liquid assets, of which 
each can be held at variable portions, creating 
an enormous search space, analogous to the 
combinatory search space in peptide/protein design. 
Similarly, the ability to predict the future 
performance of these individual assets is rather 
poor, creating the need for investment in a portfolio/ 
ensemble of assets rather than a single one. 
The modern portfolio theory (MPT) or mean-
variance analysis [12] was introduced in 1952, 
by Prof. Harry Markowitz who was awarded the 
Nobel Prize for its development in 1991. One 
of the fundamental concepts introduced by this 
theory is investor risk aversion. This implies that 
investors expect to be compensated for the 
investment risks undertaken. Investors will avoid 
an investment opportunity if alternatives of lower 
risk and similar expected return or similar risk and 
higher expected returns exist.    
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In the original paper, Markowitz used the 
arithmetic average of historic returns as the 
measurement for expected returns and the historic 
arithmetic standard deviation as an asset’s risk 
measurement [12]. These were later combined 
with pairwise historic correlation coefficients 
to deterministically calculate the asset weights 
that produce an optimal portfolio, with the highest 
return per risk ratio [12]. Today, a variety of risk 
measurements are used in numerous optimization 
techniques for the accomplishment of an optimal 
risk-averse investment portfolio. Notably, the MPT 
was performed prior to the availability of high-
end computational technology and was performed 
without stochastic sampling. MPT-based optimization 
approaches have since been adopted to irrigation 
water management [13], biodiversity conservation 
[14], climate change management [15] and even 
national security [16]. 
In this paper we will introduce an MPT approach 
for rigid-body side-chain design in protein-protein 
and peptide-protein interfaces and demonstrate 
a few theoretical and lab-validated design cases. 
In these cases, the input structure contains a pre-
positioned interface of poly-glycine, which was 
designed to bind the partner protein using all 
rotamers for all 20 naturally occurring amino-
acids. We will compare the results to those 
obtained by Monte Carlo simulation [2], the high-
end ISE algorithm [3] and the fast but complex 
problem incompatible random-greedy algorithm.  
 
MATERIALS AND METHODS 

Protein structure treatment 
Protein-protein and protein-peptide complexes of 
resolution 2.5Ǻ or better were selected. The complexes 
were then checked using the MolProbity server 
[17] (http://molprobity.biochem.duke.edu/). No 
protein structures with missing any interfacial 
or backbone atoms were taken. Protein structures 
with missing side-chain atoms were corrected 
by sampling the rotamers [18] of the appropriate 
residue and selecting the lowest potential energy 
rotamer, calculated using the AMBER force-field 
[19], with the GB/SA solvation model [20, 21]. 
Hydrogen atoms were explicitly added with 
the most common ionization state at pH7 (charged 
Lysine, Arginine, Aspartate, Glutamate and Histidine 
along with N and C termini).  
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return as its expected return in the future, 
a common practice in financial optimizations 
using the modern portfolio theory and which 
is of course, also probabilistic in nature.  

“Risk” in side-chain optimization 
The “risk” in choosing a particular rotamer 
is attributed to rotamer options being mutually 
exclusive with others. In its most robust form, this 
is caused by two rotamers in different positions 
that occupy the same Cartesian space, leading 
to atomic clashes. Other forms of mutual exclusivity 
such as electrostatic repulsion, lack of backbone 
conformation compatibility and solubility also 
exist, but are not included in this study 
for simplicity’s sake. In cases where the highest 
return rotamers in all positions, are risk-free, the 
modeling problem is reduced to sampling, scoring 
and picking the highest return rotamer in each 
position- a “Greedy Algorithm”. Mutual exclusivities, 
or “risk” prevent the fast “Greedy Algorithm” 
deployment, requiring an algorithm compatible 
with higher complexities.  
For example, assume a simple system of two 
positions X and Y being optimized to bind a target 
protein. Each position has a “hot-spot” amino-acid 
rotamer; i for X and j for Y and both positions 
have a “risk-free”, ‘(rf) alanine residue with EY(rf) 
= EX(rf) = 0 Kcal/mol.  Rotamer i has the highest 
expected return in position X so that EX(i) = -5 
Kcal/mol, but also clashes with the superior return 
rotamer, j of position Y. where EY(j) = -7 Kcal/mol. 
A "Greedy Algorithm" that would sample X first, 
would be barred from choosing rotamer j 
in position Y and would have to choose the rf 
rotamer, leading to a final binding energy 
of -5 Kcal/mol. In this case an optimal solution 
would be the selection of j in position Y and rf 
in position X, to create a final binding energy of 
-7 Kcal/mol. At this stage rotamer i of position X 
has both the qualities of “risk” and “return”. 
Selecting it would contribute -5 Kcal/mol towards 
binding, but at the “risk” of loosing a contribution 
of -7 Kcal/mol of j in position Y. Likewise, 
rotamer j of position Y has a return of -7 Kcal/mol 
and “risk” of -5 Kcal/mol. 
Another important aspect of measuring the “risk” 
in picking a rotamer is the cost of substitution 
of the rotamers with which it is mutually exclusive,
 

In interfacial side-chain optimizations, the interface 
residues to be optimized (designed) were defined 
as residues with an inter-protein backbone Cα-Cα 
atom distance of less than 16Ǻ, to at least one 
of the partner protein’s Cα atoms. Only residues 
that fit this criterion were considered for 
optimization.  
When performing mutations to optimize the 
binding to a partner protein a risk of destabilizing 
the designed protein exists. To prevent the 
destabilization of the folded structure of the 
protein/peptide being optimized, the protein’s/ 
peptide’s conformational energy potentials were 
calculated. Interface residues that contributed 
-1.5 Kcal/mol, or lower were excluded from 
mutation; this is a user defined threshold (selected 
by the individual user) and can be repeated with 
different cutoffs.  

Expected “Returns” in side-chain optimization 
To use the risk-return heuristic we must first 
define risk and return in protein design. Most 
molecular mechanics force fields and other energy 
scoring functions are composed of the summation 
of pairwise terms. Under this assumption we can 
test the binding affinity of each rotamer in each 
possible position, with all other designed positions 
mutated to Glycine. This energy (minus the 
backbone interaction energy) represents the rotamer’s 
marginal contribution to a hypothetical complex. 
This marginal contribution is henceforth labeled 
EX(i), or the expected return of a particular rotamer 
i in position X (a position is normally the residue 
number in the modeled chain). It is important 
to note that this is an approximation, as physical 
interactions that are not pairwise are known 
to exist. For example, a residue involved in hydrogen 
bonding would show a higher marginal energy 
contribution if surrounded by bulky residues that 
increase its effective Born radius (lowering the 
dielectric constant of the electrostatic component 
dominant in a hydrogen bond), in a concurrence 
to the “O-ring” structures observed by Bogan and 
Thorn [22]. It is for that reason that we label the 
return for choosing rotamer i in position X 
as expected, as modifications in the final model 
may lead to some deviations from this value. This, 
and other force-field inaccuracies are similar 
in nature to the usage of a stock’s historic average
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riskless rotamers other than glycine that shows no 
mutual exclusivity. In such cases, glycine may be 
rendered “inefficient” and eliminated. 

Risk adjusted design (RAD) optimization 
procedure 
Prior to optimization, the energy return for each 
possible rotamer in each possible position 
is calculated. Rotamers that add a more positive 
interaction energy than glycine or clash with the 
designed sequence’s backbone are automatically 
eliminated at this stage. During this procedure, 
every tested rotamer “signs” a grid (automatically 
determined to include all space within the cutoff 
distance) at every grid point which is inside its 
atomic radii. Rotamers which “sign” the same 
grid point are considered mutually exclusive and 
have a risk Boolean (Bij) of 1 to one another.  
The optimization procedure is performed 
iteratively. At the beginning of each procedure the 
risk of each rotamer is evaluated as described 
above. For each position, each possible rotamer 
is checked against all other rotamers in that 
position. Rotamers which have a higher risk without 
the compensation of excess returns from 
(or alternately, lower returns at the same risk) any 
other rotamer in that position are added to the 
inefficiency score. In each iteration, the rotamer 
with the highest inefficiency score is eliminated. 
It is important to note that the elimination 
of a rotamer changes the risk estimate of all 
rotamers with which it has a Bij of 1, The 
elimination also changes the probability substitution 
weight PY(j) in the position of the eliminated 
rotamer. At the end of the elimination process, 
an “efficient set” of rotamers remains in every 
position and the “risk” values are re-calculated. 
The iterations continue until no more elimination 
can take place, because all rotamers are “efficient”, 
or alternately, the combinatorial size allows for an 
exhaustive search of the remaining rotamers.  

Iterative stochastic elimination (ISE) 
Iterative stochastic elimination (ISE) has been 
previously described [3], with successful applications 
in protein flexible fragment conformational searches 
[3, 23], cyclic peptide design [24], ligand docking 
[25], and chemoinformatic models [26]. Briefly, 
ISE is a generic discrete combinatorial optimization 

in the same position. Taking the above example 
where EX(i) = -5 Kcal/mol is mutually exclusive 
with EY(j ) = -7 Kcal/mol, if we introduce a new 
rotamer, k as the best non-mutually exclusive 
energy contributing rotamer in position Y, so that 
EY(k) = -6, then the cost of selecting i on position 
X, due to position Y is (-6)-(-7) = 1 and depending 
on its interactions with other positions, i could 
still be favorable for the optimum solution. 
However if EY(k) = -1, the cost of selecting i 
on position X due to Y is (-1)-(-7) = 6. It is hence 
intuitive that the mutual exclusivity with a “hot-
spot” rotamer in the case where numerous “hot-
spot” rotamers are available in the same position 
is less “risky” than mutual exclusivity with the 
same rotamer energy without other potential “hot-
spots” in that position. This substitution factor can 
be shown as the absolute value of the energy 
contribution of a rotamer divided by the sum 
of the absolute values of each contributing 
rotamer in the same position, denoted as PY(j) 
for rotamer j in position Y: 

( ) ( )
0

( ) = ( ) / ( )
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t
py j Ey j Ey i
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It is therefore clear that the risk measurement 
of selecting a particular rotamer is composed 
of both the returns of mutually exclusive rotamers, 
as well as their marginal cost of substitution. 
We devised the following definition of risk 
of selecting rotamer i in position X: 

( ) = ( )  ( ( )) ( ( ))
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where Bij is a Boolean operator that takes the 
value of 1 when i and j are mutually exclusive and 
0 for all others, PY(j) is the relative energy 
contribution of the rotamer j in position y and 
ΔEY(j) is the “return” of j. Rotamers that show 
returns poorer than glycine are not included in the 
risk measurement, as for any given position, 
glycine serves as a risk-free asset. Since glycine 
has no side chain, it cannot be mutually exclusive 
with side chains from other positions. Thus, 
rotamers that provide expected returns more 
positive than or equal to glycine are by definition 
inefficient, offering no compensation for the risk 
taken by choosing them. There can also be 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p(s1) = e((s0-s1)/RT)

where, e is Euler’s number, R is Boltzmann’s 
constant and T is temperature in degrees Kelvin. 
This probability is compared to a random number 
from 0 to 1; if the probability is greater than the 
random number, the new state is accepted and 
becomes the current state for the next iteration, 
while a random number higher than the probability 
leads to a rejection of the new state and the 
preservation of the current state. The temperature 
was set as constant, at 300 °K. 

Random greedy side-chain optimization (RG) 
Random greedy optimization was performed 
as follows: The designed peptide/protein’s interface 
was mutated to Glycine. Positions were then 
chosen in random order and the lowest energy 
rotamer was selected for each position. At each 
position, only rotamers compatible with the 
backbone and rotamers previously selected are 
screened. The optimization is run in parallel, with 
each process following a random position section 
order. 
 
RESULTS 
We selected several test cases to demonstrate the 
risk adjusted design (RAD) algorithm, which 
implements the “risk” and “returns” criteria used 
in the modern portfolio theory for rigid-body 
interface design. For this purpose, we are describing 
below several theoretical and lab-validated cases.  
We have previously reported about our ab initio 
discovery of a structure-stabilizing chaperone 
for Y329S mutated human Glycogen Branching 
Enzyme 1(hGBE1), leading to the ultra-orphan 
adult polyglucosan body disease (APBD) [27]. 
The Y329S mutation causes a complete or near 
complete loss of function of hGBE1, with patient 
cells showing 0-5% of normal human activity 
[27]. The crystal solution of the wild-type (WT) 
hGBE1 showed that the Y329S mutation area was 
solvent accessible, allowing for a potential peptide 
chaperone to compensate for the loss of non-polar 
interactions of the benzene ring and hydrogen 
bond of the hydroxyl group [27]. This required 
screening thousands of possible backbone 
conformations followed by side-chain optimization, 
with different length and size. The RAD 
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method that, in its application to finding the 
global energy minima, iteratively eliminates 
values which contribute consistently to highest 
energy conformations, and to a lesser extent 
to lowest energy conformations. The algorithm 
begins by constructing a matrix that contains a set 
of the possible (discrete) values for each degree 
of freedom (variable) that defines the problem 
(system). If the problem is molecular conformation/ 
composition and the degrees of freedom are 
amino acid rotamers, the dihedral angles for each 
rotamer represent individual variable values. One 
rotamer is randomly picked for each interface 
position and is compatible with previously picked 
rotamers in other positions. After all positions are 
picked, the protein/peptide binding affinity 
is calculated as described above. This step 
is repeated many times to form a large sample, 
usually in the range of 30,000 sampled full 
conformations. The scores of that sample are 
arranged in a virtual histogram in which only 
a small fraction (1-10%) of worst and of best 
results are examined in detail and compared 
to assess the contribution of each and every 
variable value to the final scores of these best and 
worst results. 
A value that appears in the worst results with 
a significantly higher frequency than expected 
from its random distribution (based on its total 
appearance in the full sample) and appears with 
a significantly lower frequency than expected 
among the best results, is marked for elimination. 
The next iteration of random picking, scoring, 
sampling, and eliminating thus begins with 
a smaller number of possible combinations. The 
elimination process is performed iteratively until 
the number of possible conformations enables 
exhaustive search in feasible time. 

Monte Carlo side-chain optimization (MC) 
Monte Carlo sampling was performed as follows: 
The designed peptide/protein’s interface was 
mutated to Glycine. As a random selection cycle 
is initiated, the interaction energy at the current 
state, s0, is calculated. A random rotamer is then 
selected at a random position and the energy at the 
new state, s1, is calculated. An acceptance 
probability p(s1) of the new state is then 
calculated as follows: 
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“risk” and “return” values for all four amino-acid 
positions (Figure 1A). Observation of the peptide’s 
“risk-return” graphs shows that two out of four 
amino acid positions, in positions 1 and 3, are 
“risk-free” for the best solution (Figure 1A). RAD 
can at this point select the leucine residue 
for position 1 (Figure 1A, top left) and the lysine 
residue for position 3 (Figure 1A, bottom left). 
Being “risk free” indicates that this will not 
adversely affect the rest of the design process 
and hence, there is no need to further sample these 
positions. When optimizing a 4-position peptide 
 
 

 
 
 
 
 
 
 
 
 
 
 

algorithm was used for side-chain optimizations, 
and out of the solution ensemble one peptide, 
LTKE, was selected for testing. LTKE showed 
a Kd of 1.6 µM, and was able to partially rescue 
about 27% of normal hGBE1 activity in patient 
cells [27].  
The RAD optimization process of the LTKE 
chaperone of Y329S hGBE1 has not been 
described thus far and will be detailed here as an 
example application of RAD. Since it is a short 
peptide, it allows us to follow the RAD process 
in detail. RAD began by analyzing the initial 
 

Figure 1. Initial risk and return graphs for binding to hGBE1. (A) The selected leucine rotamers for positions 
1 and 3 are both of best “returns” and “risk-free”, and selecting them will not adversely affect other positions. 
Positions two and four are “risky” requiring iterative optimization. (B) One risk factor was caused by an atomic 
clash between the best “return” phenylalanine of position 4 (purple) with threonine of position 2 (cyan), shown by 
the intersecting spheres.  

B.B. F4F4 T2T2B.B. F4F4 T2T2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

we often presume a 204 = 160,000 amino acid 
sequence combinatory solution space. The 
identification and separate optimization of “risk 
free” best solution positions reduced the solution 
space to only 202+2(20) = 440 iterations. While 
for such a small peptide, both solution spaces are 
feasible, the latter is much faster, especially when 
there is a need to sample thousands of backbones, 
as was done in this case. 
Two “risky” positions remained: Position 2, 
for which a “risky” threonine rotamer is also 
of the best return, and position 4, for which 
a phenylalanine rotamer was the best “return”. 
The “risk” for both best “return” rotamers was 
partially due to their mutual exclusivity, caused 
by an atomic clash (Figure 2B). Exhaustive search 
determined the LTKE combination to be the 
optimal one in the solution ensemble, with 
glutamate in position 4 being compatible with the 
threonine in position 2. The reduced complexity 
was also evident when the “LTKE” peptide was 
attained by running a “Random Greedy” algorithm 
on the same backbone. In cases where position 2 
was sampled randomly first, threonine was selected, 
which prevented the selection of phenylalanine 
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in position 4 (Figure 2B), with the best compatible 
option being the glutamate rotamer.  
An ab initio design effort was also accomplished 
using the RAD algorithm on peptides designed 
to bind to Toll-like receptor 4 (TLR4) (to 
be published separately; in preparation). TLR4 
serves as the innate immunity receptor for 
lipopolysaccharide (LPS) found in gram negative 
bacteria. TLR4 binds LPS via two co-receptors: 
MD2 and CD14 [28]. The design effort was 
focused on creating a set of peptides targeting the 
LPS binding pockets of both the MD2 (PDB: 
2Z65) [29] and CD14 (PDB: 1WWL) [30] 
co-receptors. Design was performed by running 
the RAD algorithm on multiple, randomly docked, 
poly-glycine amino-acid chains and searching the 
solution ensembles for identical “hot-spot” peptides 
that can bind both co-receptors. Eight identical 
“hot-spot” peptides were discovered for two 9 
amino-acid backbone chains in a linear conformation 
for MD2 and helical conformation for CD14. 
The risk and return criteria for position one, 
optimized for binding MD2 (Figure 2) and CD14 
(Figure 2) are analyzed here as an example. 
For both MD2 (Figure 2A) and CD14 (Figure 2A)  
 
 

 

Figure 2. RAD was used to design a 9 amino-acid backbone for binding to both MD2 and CD 14 
co-receptors of TLR4. (A) The risk/return graph for position 1 at cycle 1 shows different pattern for MD2 (top) 
and CD14 (bottom). (B) At the end of the elimination process a smaller number of rotamers remain. There is a 
change in risk from that calculated during cycle 1 for selected rotamers (by respective colored circles in A and B).  

A. B.
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and E9/IM2 complexes serve as excellent models 
for rigid body interface design. 
The Gibb’s free binding energy of the E9 Dnase 
with its cognate immunity protein IM9 complex 
has been experimentally determined at -22 Kcal/mol 
[37], while using our software (with AMBER 
GB/SA included for energy evaluations) a binding 
energy of -20.9 Kcal/mol was calculated. Alanine 
scanning mutations for this complex have been 
reported experimentally [35] and calculated in 
silico, using the Rosetta Alanine scanning procedure 
(using the Robetta server) [38, 1]. An AMBER 
GB/SA calculated repeat of the alanine scanning 
experiment by Wallis et al. [35] showed a correlation 
of 0.76 to the experimental alanine scanning 
mutagenesis of these rotamers.  
Next, we mutated interface residues of IM9 
to glycine with return and risk matrices generated 
by sampling all possible rotamers in each 
position. Following matix generation, E9 binding 
was optimized for each position using RAD. 
To exhaustively explore all rotamers remaining 
after the initial elimination of rotamers that have 
positive binding energy and rotamers clashing 
with the backbone, 1042 possible interface models 
remain and need to be evaluated. The RAD 
elimination cycles were able to reduce this 
number to 1017 following the first cycle and to a 
manageable 105 after the fourth cycle, taking only 
seconds to reach this stage that enables full 
calculation of all 105 options.  
We postulated that although this was a full-sized 
protein-protein interface, many of the significant 
residues were either “risk-free” or nearly “risk-
free” meaning that their mutual exclusivity with 
rotamers of other positions that could provide 
a major contribution to the binding energy is small. 
To demonstrate this, we ran 100 independent 
“Random Greedy” (RG) simulations, with each 
simulation covering all interface positions in a 
random order. The best and worst RG models had 
a calculated binding energy of -27.3 Kcal/mol and 
-24.7 Kcal/mol, respectively. While the top 100 
scoring models in the ensemble of solutions 
produced by RAD had calculated binding energies 
ranging from the best with -27.9 Kcal/mol to the 
worst with -27.1 Kcal/mol, suggesting that this 
was in fact the case and that the RAD algorithm 

position 1 was not “risk-free”. The RAD algorithm 
iteratively reduced the number of rotamers in the 
solution space from 34 (Figure 2A) to 8 (Figure 
2B) for MD2 and 22 (Figure 2A) to 4 (Figure 2B) 
for CD14. As eliminations of residues excluded 
from the efficient set take place in each iteration, 
risk values may increase or decrease due to the 
changing mutual exclusivities (Figure 2A, B).  
In the case of position 1, the elimination cycles 
ended prior to “efficient set” convergence, as the 
selected exhaustive solution space of 5,000 was 
reached. Of the 9 amino-acid backbone positions, 
only position 9 for MD2 and positions 5 and 9 
for CD14 showed a “risk free” best “return” 
solution. The solution space was reduced from 
1013 (CD14) and 1012 (MD2) to 5,000 for each, 
at which point an exhaustive search was 
performed, producing the solution ensemble. The 
8 sequence identical ensemble was biologically 
validated, with 2 peptides showing activity 
on both MD2 and CD14, one only on MD2 and 5 
showing no activity on either [31] (unpublished 
results).  
To demonstrate more potentially combinatorial 
problems, we performed theoretical interface 
re-design for protein-protein interfaces, for which 
one of the protein interface residues were replaced 
with glycine. The re-design was performed 
independently with RAD, ISE, MC and “Random 
Greedy” algorithms. The complex between Colicin 
Dnase E9 and its cognate immunity protein, 
IM9 has been the focus of numerous studies 
characterizing protein-protein interactions [32-35]. 
Colicin Dnases are plasmid encoded proteins that 
are cytotoxic to Eschericia-coli, cleaving its DNA. 
The bacterial cell that expresses a Colicin Dnase 
also expresses its cognate immunity protein, 
protecting its own DNA via the formation of a 
tight protein-protein complex. Immunity proteins 
can also form complexes with non-cognate Dnases, 
and these complexes tend to have remarkably 
lower binding affinities when compared to the 
cognate complexes. The E9 Dnase has X-ray 
structures solved for both its cognate complex 
with IM9 [36] (PDB: 1EMV, PDB: 1BXI) and 
its non-cognate complex with IM2 [34] (PDB: 
2WPT), with a highly conserved backbone 
structure (RMSD = 0.68Å). Coupled with extensive 
experimental binding affinity data, the E9/IM9  
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to alanine was shown to lower complex affinity 
(ΔΔG) by 2.08 Kcal/mol [35], was also conserved 
but with a different rotamer that allows for its 
carboxyl group to form a stable salt bridge with 
E9’s K97 and K89. IM9’s D51 residue, which 
contributes a significant portion of the binding 
energy via interfacial water-mediated H-bonds 
was not preserved in the RAD or ISE solution 
ensemble, possibly due to the inability to calculate 
its contribution using an implicit solvation model. 
The S50 residue was partially conserved in the 
RAD and ISE solution ensembles.  
In addition to the conservation of the majority 
of the substantial energy contributors in our 
modeling of the native IM9 protein, new 
contributors of binding energy were also found, 
allowing for improved binding energy by the 
 

converged to greedy algorithm in numerous 
positions.   
The top RAD models conserved the rotamers 
of residues L33/V37/Y54/Y55, shown experimentally 
to have the highest contribution to the binding 
energy. The valine in position 34, also shown 
to be experimentally significant, was replaced 
with a methionine rotamer that interacts similarly 
with a hydrophobic groove on the partner protein 
(Figure 3A). The E30 residue, experimentally 
determined to have a ΔΔG of 1.4 Kcal/mol [35] 
(note that in alanine scanning experiments 
positive ΔΔG values indicated a binding affinity 
contribution) and calculated to be significant both 
by RAD and by Robetta due to its salt bridge with 
the partner protein’s Arginine 54 residue, was also 
conserved. The E41 residue,  which when mutated
 

Figure 3. The redesign of IM9 interface to better bind Colicin E9 (PDB:1EMV). (A) After RAD 
algorithm convergence, 4 of the 5 experimentally determined (non-water mediated) most contributing 
residues are conserved in the designed protein (green) when compared to the WT (blue). The E30 
residue is also conserved. (B) The WT T38 residue is replaced by E forming a salt bridge with the 
K97 of E9. (C) The S29K replacement allows for a weak electrostatic interaction with D51 on E9. 
(D) The C23N replacement forming a hydrogen bond with S74 on E9. 
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ensemble, with the worst of 30 rMC models 
showing better calculated affinity than the best 
model produced by the MC set without the RAD 
cycle (Figure 4). 
The complex of E9 with its non-cognate IM2 
shares a similar backbone to the cognate complex 
(backbone RMSD = 0.39, full heavy atom RMSD 
= 0.68), and its structure has been solved using 
X-ray crystallography [34] (PDB: 2WPT). The 
non-cognate complex has a much weaker binding 
affinity to E9 when compared to the cognate 
complex, with a Kd value that is 7 orders 
of magnitude higher than the cognate complex 
(thus, nearly 10 Kcal/mol less binding energy 
to that of the cognate complex) [34]. Using our 
energy function, we tested the marginal 
contributions of each of the residues. The 
individual residue energy contributions, serving 
as the “returns” in the RAD algorithm, show 
a correlation of 0.64 to the binding energy 
differences measured in experimental alanine 
scanning mutagenesis [34]. As previously reported 
using calculations with RosettaDesign [34], 
AMBER GB/SA failed to identify the role of D33, 
a residue that when mutated to alanine improves 
the binding affinity of the non-cognate complex 
by two orders of magnitude. 
  
 

RAD and ISE solution ensembles. The replacement 
of T38 with E38 was widespread in both RAD and 
ISE solution ensembles. T38 was experimentally 
shown by alanine scanning to have a ΔΔG of 0.9 
Kcal/mol [35], and calculated to have a ΔΔG 
of 0.012 Kcal/mol by Robetta and 0.27 Kcal/mol 
by us. The replacement of T38 with E38 allows 
it to co-interact with E41 in forming a salt bridge 
with E9’s K97 (Figure 3B), increasing its Robetta- 
calculated ΔΔG to 1.9 Kcal/mol. Another example 
is the replacement of S29 with K29, allowing it to 
contribute electrostatic energy through its interaction 
with E9’s D51 (Figure 3C). The interfacial C23 
residue, experimentally found to have a ΔΔG 
of 0.92 Kcal/mol [35], and calculated to have 
a ΔΔG of -0.15 Kcal/mol by Robetta and 1.02 
Kcal/mol by AMBER GB/SA was replaced 
by N23, calculated by Robetta to contribute a ΔΔG 
of 1.5 Kcal/mol, forming a hydrogen bond with 
E9’s S74 (Figure 3D).  
To further demonstrate the concept of design risk, 
we ran 30 separate constant temperature Monte 
Carlo (MC) simulations. Simulations were carried 
out either with one cycle of RAD prior to the MC 
simulation (rMC) or without. The resulting top 
models from each of the two sets show that the 
MC following one cycle of RAD led to a superior
  
 

Figure 4. The effects of one cycle of RAD on a MC ensemble. 30 Monte Carlo simulations were performed 
on the IM9 interface (PDB: 1EMV) and displayed according to rank (X-axis) and the best calculated binding 
energy (Y-axis) in 40,000 steps. The simulations were independently performed, with the rotamers remaining 
after one cycle of RAD (rMC, grey squares) showing a better calculated affinity than the simulations conducted 
with all rotamers present (MC, black triangles). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

complex lowers its binding affinity by 2 orders of 
magnitude while the mutation of the aspartic acid 
to alanine in the non-cognate increases its binding 
affinity by 2 orders of magnitude, validating the 
importance of the D33L mutation (Figure 5B). 
The second most common amino acid in position 
33 was Q33; while no experimental evidence of this 
replacement has been reported, the Robetta 
alanine scanning server calculated that the 
mutation Q33A has a ΔΔG of 6.7 Kcal/mol [38, 1], 
mostly due to hydrogen bonding with S71 in E9 
(Figure 5C). As in the cognate complex, the E30 
salt bridge was retained in the RAD and ISE 
 

The residues of the non-cognate complex partner 
IM2 were mutated to glycine and optimized for 
binding E9 using RAD. In the top 100 models 
of the solution ensemble, 100% of the models 
retained the same rotamers of V37/Y54/Y55
as in IM2, experimentally validated hot spots 
common to both cognate and non-cognate 
complexes. The D33 residue was replaced in all 
models, with leucine being the most common 
replacement, interacting with the F87 hot spot 
in E9 in a similar fashion to the cognate leucine 
in position 33 (Figure 5B). The experimental 
mutation of this leucine to alanine in the cognate 
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Figure 5. The redesign of IM2 interface to better bind to colicin E9 (PDB: 2WPT). (A) After completing the 
design process 4 of the 5 most contributing residues are conserved in the designed protein (green) when compared 
to the WT (blue). (B) The unfavorable non-cognate D33 (blue) residue is replaced by L33 (green) very close 
in conformation to the cognate L33 (white). (C) Glutamine in position 33 hydrogen bonding with serine 71. 
(D) A comparison of the top 100 models using MC, RG, ISE and RAD. 
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able to distinguish the interface portions for which 
a combinatorial hypothesis was required. In the 
case of a number, x of amino-acid positions where 
the best solution was also “risk-free” the sampling 
space was effectively reduced to: 

Solution Space (After 1st RAD Cycle) = 20(x) + 20(n-x)  
effectively separating the non-combinatorial 
component and enabling a significantly faster 
design, with the fast “greedy algorithm” being 
used to optimize the non-combinatorial portion. 
Additionally, the usage of matrix rather than 
stochastic sampling cycles for eliminations 
provides another speed advantage.  
In the field of financial asset analysis, it has been 
shown that in order to better fit the investor’s utility 
function, one investment opportunity dominates 
another by second-degree stochastic dominance 
[39]. The capital asset pricing model uses historic 
standard deviations as a measure of risk [12], 
which has been later replaced with risk models 
more consistent with second-degree stochastic 
dominance [40]. Investor utility functions show 
concavities which best fit second-degree stochastic 
dominance outcome distributions, due to investor 
risk aversion [41]. Given two possible outcomes, 
where one provides a certain return and the other 
provides the same return with an added random 
“noise”, (which can be equally positive or negative) 
investors will choose the former over the latter 
[41]. This investor utility is understandable due 
to the nature of long term investments, where total 
gain is calculated by a geometric average, so that 
a percentage of gain does not compensate for the 
same percentage of loss. Intuitively, the utility 
function for scientists searching for new molecules 
is dissimilar, as the utility function is determined 
by the properties of the best molecule discovered 
and not by the distribution properties of the entire 
screened set. If this is indeed the case, a convex 
utility function is expected [42].   
More strict elimination criteria, such as statewise 
stochastic dominance and first-degree stochastic 
dominance should, in theory, better fit the utility 
function of molecular discovery scientists [43, 
44]. However, algorithms that rely on higher order 
elimination criteria often do not converge towards 
a feasible exhaustive search size. Our main 
motivation in developing RAD was the numerous 
 

solution ensembles and E41 residue was changed 
to be able to form a stable salt bridge with E9’s 
K97 and K89. The S50 residue is partially 
conserved and the D51 water-mediated interaction 
is lost and replaced with a Methionine that has 
a calculated contribution of 1 Kcal/mol.  
As in the cognate E9 complex, optimizing the 
binding interface using MC yielded an ensemble 
of lower binding affinities. By the RAD 
algorithm, 100% of the solution ensemble was 
found to be better by 10 Kcal/mol or more than 
the native complex (with IM2) binding affinity. 
While, by the MC, only 1 of 100 experiments 
yielded a better complex than the native, by 1 
Kcal/mol (40,000 iterations per experiment) 
(Figure 5D). Of the MC ensemble, only the top 
scoring model retained the same rotamers 
of V37/Y54/Y55, the experimentally validated hot 
spots, with the D33 residue replaced by glycine.  
 
DISCUSSION 
Risk adjusted design (RAD) implements the 
“risk” and “returns” criteria used in the modern 
portfolio theory to generate an algorithm aimed 
at performing side chain design optimization 
reaching the same quality of solutions as “high-
end” algorithms such as ISE but significantly 
faster, due to the lack of stochastic sampling. 
Stochastic sampling is performed under the null 
hypothesis, that the interface design problem 
is entirely combinatorial. As such, in the case of a 
fully combinatorial problem, the solution space is: 

Solution Space (naïve) = 20(n)  
representing the 20 naturally occurring amino-
acids on an interface of n amino-acid positions. 
On these compositions, in each position, all possible 
rotamers need to be sampled and calculated. 
Under the opposite hypothesis, that the problem 
is entirely not combinatorial, a “Greedy” algorithm 
can be used, requiring 20(n) amino-acid 
permutations, including all rotamers, a much 
smaller amount than under the combinatorial null 
hypothesis.  
The “entirely combinatorial” null hypothesis 
is hence a computationally expansive paradigm. 
Showing that when it is at least in some cases, not 
true, can greatly reduce search space. In the example 
problems shown above, the RAD algorithm was 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

successes of ISE [3, 23-26]. ISE eliminates 
variable values if their propensity of appearance 
in the worst scoring stochastic solutions 
is significantly higher than in the top scoring 
solutions [3]. This is in fact, a “risk averse” 
method, as a variable value (in our case, rotamer) 
that appears twice as often in the worst samples 
than the best could still be, in one particular case, 
the “global optimum” solution. We hence, deduced 
that the “risk” element in highly combinatorial 
problems comes from the feasibility to reach 
convergence in realistic time and not from the 
utility function of the discovery goals. 
Two main factors influence our preference 
for a timely, high quality solution ensemble over 
a single, “global optimum” solution. The first stems 
from the technical imperfections of scoring methods 
as reviewed in the introduction. This was also 
evident in the examples presented in here: In the 
TLR4 MD2/CD14 solution ensemble, only 2 out 
of 8 peptides validated were biologically active. 
Similarly, in the colicin E9 and its cognate/non-
cognate partners there were only moderate 
correlations when repeating the alanine scanning 
mutation experiments computationally. Nevertheless, 
RAD provided a very significant enrichment 
factor when compared to random search. For 
example, in the high throughput screening 
for TLR4/MD2 binding molecules only 2 out 
of 90,000 were discovered [45], representing 
an enrichment factor of 11,250 for a RAD solution 
ensemble over random screening. From this it can 
be assumed that an ensemble of high quality 
solutions is more likely to yield active molecules 
than a single “global optimum” solution using 
current scoring methods. The other factor stems 
from the ultimate goal of molecular discovery, 
which in most cases, is reaching molecules that 
can function at the organism level. The highest 
affinity “global optimum” is not guaranteed 
to possess the optimal absorption, distribution, 
metabolism, excretion and toxicity (ADMET) 
properties. A diverse solution ensemble is more 
likely to have at least one molecule with satisfactory 
ADMET properties than a single solution. 
We hence believe that at least in the foreseeable 
future, algorithms that generate solution ensembles, 
such as ISE or RAD, will have a significant 
advantage. 

CONCLUSION 
In this report we demonstrated that for rigid 
backbone side chain design, RAD can perform 
on par with ISE at a fraction of the time. This was 
done by borrowing the “risk/return” heuristic from 
the field of finance. As in financial portfolios, the 
RAD approach suffers one major disadvantage: 
There is a need to accurately define the “risk” 
function and deviations in risk functions may 
yield different results. This requires a deep 
understanding of the problem components, which 
is not always available. Unlike RAD, ISE only 
requires a scoring function and the definition 
of variables with discrete values. This enables ISE 
to be used on problems without the definition of a 
problem-specific risk function. The risk function 
presented here was only focused on binding 
affinity. We are currently working towards a risk 
function that additionally incorporates ADMET 
properties. Another challenge is to attempt 
to quantify the “noise” portion of current scoring 
functions. Hence, for example, a rotamer that 
is calculated to contribute an average of -2 Kcal/mol 
by a set of scoring functions with small standard 
deviation between them will be preferred over 
a rotamer that averages -2 Kcal/mol with a large 
standard deviation. The identification and usage 
of new, innovative risk functions can make the 
risk/return heuristic borrowed from finance, 
an important tool for molecular design.  
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