
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Biophysical modifications underlying complex learning 

ABSTRACT 
Rats that are trained in a particularly difficult 
olfactory-discrimination task demonstrate a dramatic 
increase in their capability to acquire memories of 
new odors, once they have learned the first 
discrimination task (‘rule learning’). Such rule 
learning is accompanied by a series of cellular 
modifications which share three major traits: First, 
they are widespread throughout the relevant cortical 
networks. Both physiological and morphological 
modifications are found in most of the studied 
neurons. Second, the time course in which these 
modifications appear and disappear is strongly 
correlated with the time course in which the skill 
is acquired and decays. However, memories for 
specific odors outlast these modifications by far. 
Thus, the identified modifications are related to 
rule learning (learning how to learn), rather than 
to long-term memory for the specific odors for 
which the rats are trained. Third, at the cellular 
level, learning-induced long-term modifications 
occur in the three components controlling neurons 
activation: The excitatory synaptic drive, mainly 

mediated by glutamate receptors, the intrinsic 
neuronal excitability, and synaptic inhibition, 
mediated by GABAA receptors. Such profound, 
whole network modifications are not the 
mechanism by which memories for specific 
sensory inputs or sequences of events are stored. 
Rather, they may be the mechanism that enables 
neuronal ensembles to enter into a state which
 

may be best termed “learning mode”. This state 
lasts for up to several days, and its behavioral 
manifestation is a general enhancement in 
learning capabilities in tasks that depend on these 
particular neuronal ensembles. The transition in 
and out of learning mode may be well described 
as a beyond-hebbian phenomenon, based on the 
facts that it results with a dramatic change in the 
animal’s behavior, and requires modifications in 
biophysical properties in most elements of the 
neuronal ensemble. 
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INTRODUCTION 

Rule learning 
The ability to extract general rules from specific 
experiences is a fundamental attribute of higher 
cognitive functioning. In the example of learning 
olfactory discrimination (OD) tasks, two different 
types of learning can be distinguished: acquiring 
the knowledge of how to perform a discrimination 
task (procedural memory), and acquiring the 
knowledge of the specific discriminative stimuli 
within the task (declarative memory). However, 
while our understanding of procedural and declarative 
memory (often referred to as implicit and explicit 
memory, respectively) has developed substantially 
over the past 30 years, the neurobiology of elaborate 
forms of memory - such as rule learning - is not 
well understood [1]. Thus an animal model that 
would allow a comprehensive study of the 
biological bases of rule learning is of utmost 
importance. 
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difficult OD task opens a period of accelerated 
learning of other odors, manifested as a dramatic 
increase in the rats’ capability to acquire memories 
of new odors once they have learned the first 
discrimination task, implying that rule-learning 
has taken place. This increased learning capability 
has a restricted time window, generally lasting up 
to 7-8 days [3, 18, 19] (Figure 1). Notably, the 
memory for specific odors, as indicated by “reversal 
test”, in which the rat has difficulty to acquire 
learned odors when presented with reversed 
meaning, outlast these neural modifications 
by far. Thus, the above identified modifications 
are related to rule learning itself, rather than to 
long-term memory for the specific trained odors 
[20]. 

Basic synaptic circuitry in the piriform cortex 
The piriform cortex contains three layers that are 
distinct in their neural components (Figure 2). 
Layer I includes pyramidal cell apical dendrites 
along with afferent and intra-cortical axons, and a 
small number of interneurons. The afferent inputs
 

Olfactory discrimination learning in rodents as a 
model for rule learning 
Olfactory discrimination tasks in rodents provide 
an excellent framework to investigate rule learning 
[2, 3]. Rats, for which olfaction is a dominant 
sensory modality, can efficiently learn to discriminate 
between positive and negative cues in pairs of 
odors. Furthermore, rats demonstrate capability for 
rule learning in odor discrimination, which enables 
them to acquire large amount of olfactory 
information in discrimination tasks in a relatively 
short time [3].  
OD training is known to induce changes in 
encoding of the learned odor in the olfactory bulb 
[4, 5, 6] piriform cortex [7, 8, 9], orbitofrontal 
cortex [10, 11, 12], amygdala [13 10, 11, 12] and 
hippocampus [14].  
Odor learning displays characteristics typically 
associated with higher order learning, such as: object 
oriented perception [15], pattern completion [16], 
rule learning [2, 3], and transitive inference [17].
We have shown that learning of a particularly
 

Figure 1. Olfactory-discrimination training: apparatus and rule learning. A. Schematic description of 
the 4-arm maze. Protocols for trained and pseudo- trained rats are similar: an electronic ‘start’ 
command opens two random valves out of eight (V), releasing a positive-cue odor (P) into one of the 
arms and a negative-cue odor (N) into the other. Eight seconds later, the two corresponding guillotine 
doors (D) are lifted to allow the rat to enter the selected arms. Upon reaching the far end of an arm 
(90 cm long), the rat body interrupts an infrared beam (I, arrow) and a drop of drinking water is 
released from a water hose (W) into a small drinking well (for a trained rat - only if the arm contains the 
positive-cue odor, for pseudo- trained rat- randomly). A trial ends when the rat interrupts a beam, or in 
10 seconds, if no beam is interrupted. A fan is operated for 15 seconds between trials, to remove odors. 
B. Trained rats demonstrate acquisition of rule learning. Criterion for discriminating between the first 
pair of odors (80% correct choices) was reached after 7 consecutive days of training. Discrimination 
between any new pair of odors, starting from the third pair and forth, could be reached within one day. 
Values represent mean + SE. n = 11 rats. 
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pyramidal neurons, that the post-burst AHP 
amplitude is reduced after learning [3, 22].  

Functional significance of post-burst AHP 
reduction 
Several findings suggested that AHP reduction 
enables the neuronal ensembles to enter into a 
state which may be best termed “learning mode”. 
It is likely that enhanced neuronal excitability sets 
a time window in which most neurons in the 
relevant neuronal network are more excitable, and 
thus activity-dependent synaptic modifications are 
more likely to occur [3, 22]. The main evidences 
supporting this notion are: 
a. The averaged AHP amplitude in neurons from 
hippocampus and piriform cortex is modified in 
most, if not all, sampled neurons, and tends to 
return to its initial value within days, when training 
is suspended (Figure 3B, C). This recovery is not 
accompanied by memory loss. However, rule 
learning (manifested as the enhanced ability to 
acquire new memories rapidly and efficiently) is 
strongly correlated with reduced post-burst AHP; 
return of AHP to its initial value is accompanied 
by reduced learning capability. 
b. Before olfactory training, application of a 
cholinergic agent reduces the post-burst AHP and 
blocking cholinergic activity delays rule learning. 
However, once rule learning is established, 
acetylcholine’s ability to affect the AHP is 
abolished and it also does not affect further 
acquisition of memories [19]. 
c. Learning impairment in aged animals is 
accompanied by enhanced post burst AHP [29]. 
d. Application of apamin, venom that reduces the 
AHP by blocking the IAHP current, enhances 
hippocampal-dependent memory encoding, but 
not retention [30]. 
e. Finally, in the process of olfactory-discrimination 
learning the post burst AHP is reduced and 
neuronal excitability is transiently enhanced in 
CA1 pyramidal neurons. Such olfactory learning-
induced increased excitability in hippocampal 
neurons enhances the rats’ learning capability in 
another hippocampus-dependent task, the Morris 
water maze [14]. These evidences suggest that 
enhanced excitability of CA1 neurons may serve 
as a mechanism for generalized enhancement of 
hippocampus-dependent learning capability.   
 
 

from the olfactory bulb terminate within superficial 
Layer I (Ia) while the deeper Layer Ib contains 
mostly intra-cortical association fibers. Layer II 
contains pyramidal cell bodies, the superficial 
lamina; IIa, contains the somata of semilunar 
pyramidal neurons, and the deeper lamina; IIb, 
contains densely packed pyramidal cell bodies. 
Layer III contains basal dendrites and axons of 
Layer II pyramidal neurons, as well as deep 
pyramidal neurons that extend apical dendrites 
into Layer I, and local interneurons. The piriform 
cortex contains several classes of GABAergic 
interneurons, distinguished both on morphology 
and laminar location [21]. The GABAergic 
interneurons include horizontal cells within Layer 
Ia and with long dendrites parallel to the cortical 
surface. Additional multipolar cells (without 
dendritic spines) lie within Layer II and III, 
mediating classic inhibitory feedback functions, 
and a class of small bipolar or bitufted cells have 
somata in Layer IIa and dendrites extending into 
both Layers I and III. The major elements of the 
piriform cortex circuit are shown schematically in 
Figure 2.  
 
Physiological manifestations of rule learning 

Learning-induced enhancement of neuronal 
excitability  
Learning induced enhancement in neuronal 
excitability has been shown in hippocampal 
neurons following classical conditioning of the 
trace eyeblink response [22, 23] and the Morris 
water-maze task [24], and in piriform cortex 
neurons following operant conditioning [3, 19, 25].  
In hippocampal and piriform cortex neurons, this 
enhanced excitability is manifested in reduced 
spike-frequency adaptation in response to 
prolonged depolarizing current step injections 
[22, 19, 23]. Olfactory-discrimination learning also 
results in enhanced neuronal excitability in CA1 
hippocampal neurons [14].   
Neuronal adaptation in neocortical, hippocampal 
and piriform cortex pyramidal neurons is 
modulated by medium and slow after-
hyperpolarizations (AHPs) (Figure 3A), generated 
by potassium currents, which develop following a 
burst of action potentials [19, 26, 27, 28]. Indeed, 
it was shown in hippocampal and piriform cortex 
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Figure 2. Major local circuit components of the piriform cortex. Pyramidal cell bodies are located mainly 
in layer II, and also in layer III. Layer Ia entails afferent axons arriving from the lateral olfactory tract (LOT), 
and  layer Ib  entails intracortical axons arriving from neighboring pyramidal cells (association fibers). Local 
GABAergic inhibitory interneurons are located in all layers. Abbreviations: H = horizontal cell interneuron; 
MP = multipolar interneuron; SL = semilunar pyramidal cell; SP = superficial pyramidal cell; DP = deep 
pyramidal cell; ASSN = association fibers. 
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increase was observed in the majority of cells of 
the relevant region [39, 44]. The functionality of 
this increase is yet to be described; its magnitude, 
its presence in the majority of the cells and its 
transient nature do not agree with the principle of 
classical Hebbian learning. 
Olfactory-discrimination rule learning induces a 
dramatic increase in the averaged amplitude of 
spontaneous miniature excitatory currents in 
piriform cortex pyramidal neurons (Figure 4A, B).  
As seen for enhanced neuronal excitability, the 
increase in mEPSCs averaged amplitude was 
apparent throughout the sampled neuronal 
population (Figure 4C). 

The problem of unbalanced over-excitation  
Since excitatory synaptic transmission and neuronal 
excitation are both profoundly enhanced by learning, 
the cortex may enter an over-excited state, during 
which epileptic-like activity propagates along the 
tissue [46]. Such hyper-excitable activity may 
prevent any efficient ability to store memories (see 
for example, [47, 48]). Homeostatic mechanisms 
that keep the neuronal activity within a certain 
range have been found in many systems [49]. 
Strengthening inhibition is a possible homeostatic 
mechanism for restoring the balance between 
excitation and inhibition, and hence for preventing 
 

Learning-induced modulation of excitatory 
synaptic transmission 
Modulation of post synaptic AMPA (alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid) receptors has been suggested to have a key 
role in synaptic plasticity and to mediate the early 
cellular events leading to learning and memory [31]. 
The increase in synaptic strength that mediates 
memory formation through Hebbian-type learning 
is traditionally thought to be synapse-specific, 
where mostly the synapses that connect a subset 
of active neurons are enhanced [32]. Taken 
together with the notion that learning involves 
both potentiation and depression of synaptic 
strength [32], the overall increase in excitatory 
synaptic strength onto any particular cell should 
be relatively small. Indeed several studies which 
reason that Hebbian learning underlies the 
increase in synaptic strength demonstrate a small 
increase in the total synaptic strength in a cell 
following learning [33, 34, 35, 36, 37, 38]. 
However, recently, a growing body of evidence 
demonstrate large overall increase in synaptic strength 
(> 50%) following various training paradigms, in 
different brain structures [39, 40, 41, 42, 43, 44, 45].  
Such enhanced synaptic transmission is transient, 
returning to baseline few days after training 
termination [39, 41]. Moreover, the synaptic
 

Legend to Figure 3. The post-burst AHP is transiently reduced after rule learning in most neurons from 
trained rats. A. Post-burst AHP measurements in a piriform cortex pyramidal neuron. Neuron was held at a 
membrane potential of -60 mV and an AHP was generated by a 100 ms depolarizing current step injection via the 
recording electrode, with intensity sufficient to generate a train of six action potentials. B. Time course of AHP 
reduction in neurons from trained rats. Amplitudes of AHPs recorded in neurons from trained rats on different days 
after the beginning of training compared with AHPs in neurons from pseudo-trained recorded at the same day. 
C. Cumulative frequency distribution of AHP amplitudes. Each point represents the AHP in one cell. AHP 
amplitudes in neurons from trained rats create a curve that smoothly shifted to the left along the x axis, relative to the 
curve of neurons from pseudo trained rats, indicating that AHP reduction occurs throughout the neuronal population.

Legend to Figure 4. Learning-induced enhancement of excitatory synaptic currents. A. Spontaneous synaptic 
events recorded in neurons from a pseudo trained and a trained rat at holding potential of -80 mV, four days after rule 
learning. In each neuron, three traces are superimposed. High amplitude events (> 25 pA) were seen in most neurons 
taken from trained rats, but very seldom in neurons from controls. In these recording conditions, application of the 
AMPAR blocker, DNQX (20 µM), abolished all spontaneous events, indicating that only sEPSCs were recorded. 
B. Averaged amplitude of spontaneous EPSCs in neurons from trained rats is markedly higher than in neurons from 
the two control groups, which do not differ between each other. The averaged amplitude was calculated for each 
neuron from all spontaneous events. Values (mean±SE) represent the average of all cells in each group (**P<0.01). 
C. Cumulative-frequency distributions of all averages in the three rat groups. Each point represents the averaged 
sEPSC in one neuron. Note that the averaged EPSC amplitude appears to increase in most neurons in the trained 
group. Data was taken for 20 trained, 13 pseudo trained and 14 naïve rats. Figure modified from ref 61. 
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Figure 5. Learning-induced hyper-polarization of the fast IPSP’s reversal. A. Typical recording at 
different membrane potentials in a neuron from a pseudo trained rat (left) and a neuron from a trained rat 
(right). The reversal potential of the IPSP in the control neuron is at -69 mV and in the trained neuron at -75 mV. 
Numbers on left of traces note the holding membrane potential. B. Averaged values of the IPSP’s reversal 
potential in the three experimental groups (N = naïve, T = trained, P = pseudo trained). This value is 
significantly lower for the neurons taken from trained rats (*p<0.01). Values represent mean + SE. C. A 
cumulative frequency graph comparing the reversal potentials of the fast IPSP in neurons from controls versus 
trained rats. Each point represents the reversal potential in one neuron. Notably, the curve for the trained group 
is shifted smoothly leftwards relative to the controls.  

Figure 6. Learning-induced enhancement of GABAA-mediated currents. A. Miniature inhibitory 
synaptic events in a neuron from a pseudo trained and a neuron from a trained  rat at holding potential of 
-60 mV, recorded in the presence of TTX (1 uM), DNQX (20 uM) and APV (50 uM), four days after rule 
learning. Note the marked differences in the IPSCs amplitudes between the neurons. In these recording 
conditions, application of the GABAA blocker, BMI (10 µM), abolished all miniature events, indicating 
that only IPSCs were recorded. B. Averaged median of miniature events in neurons from trained rats is 
significantly higher than in neurons from the pseudo-trained groups. The median was determined for each 
neuron from all spontaneous events. Values (Mean ± SE) represent the average of all cells in each group 
(*P<0.05). C. Cumulative-frequency distributions of event averages of the three groups. Each point 
represents the average sIPSC in one neuron. The averaged sIPSC appears to increase in most neurons 
recorded in the trained group. Data was taken for 14 trained, 10 pseudo trained and 6 naïve rats. Figure 
modified from ref 61. 
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Such skill acquisition, termed ‘rule learning’ or 
‘learning set’, is accompanied by profound long-
lasting biophysical modification in most elements 
of pyramidal neurons populations in the relevant 
brain areas area.  
Ample evidence indicates that at the cellular level, 
learning-induced long-term modifications occur 
in the three components controlling neurons 
activation: the excitatory synaptic drive, mainly 

mediated by glutamate receptors, the intrinsic 
neuronal excitability, and synaptic inhibition 
mediated by GABAA receptors. 
Such profound, wide spread, modifications are 
manifested in transfer of the relevant neuronal 
networks into ‘learning mode’. This state allows 
the animal to perform complex learning tasks 
rapidly and efficiently while maintaining the 
network stability. 
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