
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
NMR spectroscopy is generally performed in 
aqueous solutions, thus a frequently occurring 
problem is the recovering of weak resonances 
superimposed by an intense solvent signal. 
Recently, the fully automated approach 
AUREMOL-SSA/ALS has been successfully 
applied to different types of n-dimensional NMR 
spectra; it uses singular spectrum analysis (SSA) 
for solvent artifact removal combined with an 
automated linear spline (ALS) for baseline 
correction. Here, independent component analysis 
(ICA) is introduced as a new method for the 
suppression of the solvent signal and compared 
with SSA. In principle, ICA can overcome some 
limitations of the SSA but requires a suitable 
experimental acquisition protocol for its application 
to one-dimensional NMR spectra. SSA is usually 
applied to the time domain signal (FID) and 
requires as input a single FID. In contrast, ICA is 
optimally applied to frequency domain signals 
and requires as input at least two different spectra. 
Here, different acquisition schemes tailored for 
ICA have been applied to one-dimensional 
synthetic and experimental datasets of the small 
globular protein HPr as well as on urine spectra. 
Excellent results have been obtained by the ICA 
especially under conditions where SSA fails. 

Independent component analysis (ICA) and singular 
spectrum analysis (SSA) for solvent artifact suppression in 
one-dimensional NMR spectroscopy: A comparative analysis  
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INTRODUCTION 
NMR spectroscopy has become a powerful 
analytical method with many applications in 
various fields of biochemical and biophysical 
research. It is a suitable technique for identifying 
and quantifying small molecules in solutions 
and for determining the chemical structure of 
unknown substances. Quantification of small 
compounds in biofluids such as blood plasma and 
urine is a key feature in metabolomics (see e.g. 
[1, 2]). In addition, NMR can also provide 
information on the spatial arrangement of atoms 
and their dynamics in biomacromolecules such as 
proteins and nucleic acids and their macromolecular 
complexes (see e. g. [3, 4]). A common problem 
of NMR spectroscopy is due to artifacts caused by 
the strong solvent signal (see e.g. [5] and 
references herein) that is in biological samples 
usually water. 
A simple way to reduce the water 1H signal is 
by replacing normal water with heavy water. 
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(FID) in a multi-dimensional space, yielding a
trajectory matrix containing shifted versions of 
the same FID. An inherent property of ICA is 
instead that it needs at least as many different 
spectra of the same sample as the number of source 
signals that should be separated. In addition, 
the source components have to be differently 
weighted in the spectra. As shown earlier [25, 26], 
for higher dimensional spectroscopy one can use 
several rows in the mixed time-frequency domain 
for this purpose. In one-dimensional NMR 
spectroscopy this is not possible since usually 
only one FID is available. The solution to that 
problem lies in the creation of a set of one-
dimensional spectra tailored for the application of 
ICA [36, 37]. In the following we will show the 
advantages and limits of the application of ICA 
for solvent removal as compared to SSA. 
 
MATERIALS AND METHODS 

Synthetic datasets and simulations 
A synthetic one-dimensional spectrum has been 
calculated with the AUREMOL routine RELAX-
JT2 [38] starting from the three-dimensional 
structure of a mutant of histidine-containing 
phosphocarrier protein HPr (H15A) [39] from 
Staphylococcus aureus and using the corresponding 
experimental chemical shifts. RELAX-JT2 simulates 
multiplet structures as well as line widths. A one-
dimensional 600 MHz NOESY spectrum with a 
mixing time of 0.15 s, a relaxation delay of 1.5 s, 
a spectral width of 12.65 ppm and 2048 complex 
time domain data points was simulated. The 
resulting time domain data was filtered by 
exponential multiplication with a line broadening 
of 3 Hz. The water artifact was produced by 
measuring a one-dimensional spectrum of 90% 
H2O/10% D2O with solvent pre-saturation at 
600 MHz, having the same acquisition parameters 
as those ones used for the HPr spectrum simulation. 
Before the Fourier transformation the water 
artifact signal was added to the synthetic time 
domain signal of the protein. The phase and the 
amplitude of the added water signal were varied 
by performing respectively a phase correction and 
an intensity variation in the frequency domain 
followed by an inverse Fourier transformation. 
The same routine [38] has been used to generate a 

However, in general this is not a solution of the 
problem. In metabolomics, the aqueous samples 
of body fluids should be analyzed as they are. In 
protein NMR spectroscopy, the signals of amide 
protons contain valuable structural information. 
Replacement of normal water by heavy water 
leads to an exchange of protons by deuterons in 
the amide groups and thus it leads to the 
disappearance of the correspondent proton signals. 
For a protein dissolved in 90% H2O/10% D2O the 
concentration of solvent protons is more than five 
orders of magnitude greater than the typical 
concentration of the protein protons in the 
solution. Correspondingly, many experimental 
methods [6-11], have been developed, that at 
least partly suppress the water signal. Neither 
conventional solvent signal suppression nor tailored 
excitation procedures are able to reveal the solute 
signals very close to the solvent that may be 
important for the interpretation of the data. 
Alternatively, many post-processing methods were 
proposed that attempt to deal with this problem 
[12-28]. 
A powerful program that is able to strongly reduce 
the solvent signal in NMR spectra is AUREMOL-
SSA/ALS. It is based on singular spectrum 
analysis (SSA) [29] and can be applied to one-
dimensional [28] as well as to multi-dimensional 
spectra [27]. However, AUREMOL-SSA causes 
processing artifact when the solvent artifact is not 
the dominant signal in the spectrum. Independent 
component analysis (ICA) represents a promising 
alternative for those spectra that cannot be 
properly managed by the SSA. ICA [30] belongs 
to the class of Blind Source Separation (BSS) 
methods [31]. It has been successfully applied on 
EEG data revealing brain activities [32] and for 
feature extraction purposes from image and audio 
signals [33, 34]. The principal component analysis 
(PCA) [35] extracts uncorrelated components by 
means of second order statistics (variance 
maximization), while ICA looks for independent 
sources using higher order statistics (non-
Gaussianity maximization). 
SSA is typically applied on the time domain data, 
whereas the ICA can be used to decompose the 
overlapping signals directly in the frequency 
domain. SSA embeds a single time domain signal 
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ALS and AUREMOL-ICA are parts of the 
program AUREMOL [5].  
 
Theoretical considerations and implementation

Singular spectrum analysis of NMR data 
The application of SSA to n-dimensional NMR 
spectroscopy (n > 1) has been described in detail 
earlier [27, 28]. It is applied to time domain NMR 
data independently on the dimensionality since it 
manages separately each (complex) FID. SSA is 
an extension of the PCA (principal component 
analysis) and it is a nonparametric method that 
allows decomposing a time series into a sum of M 
interpretable components (Fig. 2). The number M 
has to be adapted to the complexity and digital
resolution of the spectra. In typical multi-
dimensional NMR spectra of proteins with 
relatively low resolution (typically 2 K complex 
time domain data points in the direct dimension) 
the embedding in 20 dimensions (M = 20) is 
sufficient. In one-dimensional spectra (e. g. of 
body fluids) with much higher digital resolution 
(typically 16 K complex time domain data points) 
the embedding with M = 40 showed to be 
appropriate [28]. For solvent artifact removal, the 
component with the largest eigenvalue is nullified 
before reconstructing the signal.  
Consider a one-dimensional time domain signal 
(FID) xi of length N. When a finite impulse 
response filter (FIR) is used for oversampling 
[41], the initial portion of the signal does not 
contain useful information, thus it is excluded 
from the calculation and stored for a successive 
regeneration of the original dataset. The 
corresponding group delay (GRPDLY) severely 
affects the extracted components if it is not 
properly managed, being responsible of wiggles in 
the Fourier transformed spectrum. The SSA 
procedure needs only one time domain signal 
(FID) as input. The centered and normalized FID 
of length (1 x Ng) with Ng = (N-GRPDLY) is 
embedded in its delayed coordinates with an 
(Ng-M+1) window size. A phase correction is 
automatically applied by the developed algorithm 
in accordance to the time shift due to the initial 
group delay. An automated baseline correction is 
performed as well in the frequency domain in 
order to obtain the final spectrum. Thus, the 
already developed AUREMOL-SSA/ALS solvent 
 

600 MHz NOESY synthetic one-dimensional 
spectrum from the three-dimensional structure of
the histidine-containing phosphocarrier protein HPr 
from Staphylococcus carnosus [40]. It has been 
back-calculated with a mixing time of 0.01 s, a 
relaxation delay of 1 s, a spectral width of 14.98 
ppm and 32768 complex time domain data points. 

Experimental datasets 
All NMR spectra were recorded with a Bruker 
Avance-600 spectrometer operating at 600 MHz 
equipped with a cryoprobe. They have been 
recorded at 298 K. 

Urine spectra 
One-dimensional NOESY-type spectra of human 
urine have been recorded using oversampling [41] 
and digital filtering (Bruker DQD mode). The 
urine was buffered by 133 mM sodium phosphate, 
pH 7.4, 5% D2O and 100 µM DSS (4,4-dimethyl-
4-silapentane-1-sulfonic acid) was added as 
internal reference. The water signal was reduced 
by a selective pre-saturation pulse of 5 s. 131,072 
complex time domain points were recorded in the 
digital mode (group delay of 144 data points) with 
a spectral width of 20.03 ppm. A set of four 
experiments has been measured with different 
NOE mixing times of 10, 20, 800, and 1000 ms 
(for details see Fig. 1a). These two urine datasets 
(10, 20 ms and 800, 1000 ms) have been used 
separately as input to the ICA. 

HPr spectra 
One-dimensional NMR spectra have been 
measured with a sample containing 1 mM 
uniformly 15N-enriched HPr protein from 
Staphylococcus carnosus [40] in 95% H2O/5% 
D2O, pH 7. Two types of spectra were recorded: a 
set of 1D-NOESY spectra with different phase 
cycles (see Fig. 1a) and a set of diffusion 
weighted 1D-NOESY spectra (see Fig. 1b). The 
spectral width was 14.98 ppm and the mixing time 
was 10ms. 32,768 complex time domain points 
(including 140 points of the group delay) have 
been recorded. The water signal was reduced by 
selective pre-saturation of 1 s.  

Software  
All the NMR data were acquired with the program 
TOPSPIN (Bruker, Karlsruhe). AUREMOL-SSA/ 
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dominant one, nullifying the largest eigenvalue 
leads to an undesired removal of the strongest 
solute resonances.  

Independent component analysis of NMR data 
ICA represents the solution of the cocktail party 
problem [30], where the signal detected by a 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

removal method involves an adequate pre-
processing step, including digitally filtered data 
managing and time domain signal normalization. 
It also encompasses a consecutive post-processing 
step concerning baseline and phase correction in 
the frequency domain. Moreover, from the theory 
it is evident that if the solvent signal is not the 
 

Fig. 1. ICA-tailored NMR experiments. The thin and the thick solid bars represent 90° and 180° hard RF-pulses. 
Gradient pulses applied along the z-axis are represented by black boxes.  
(a) NOESY-type pulse sequence for editing the sign or intensity of the water signal. Here, two spectra with 
different weighting of the water and the protein signals can be obtained by variation of the mixing time 
(T1-weighting). Alternatively, the sign of the water signal can be varied in the two spectra by a modified phase 
cycle that makes use of the fast radiation damping of the water signal.  
Two separate spectra with a different sign of the water signal can be obtained by selecting in the first spectrum 
ϕ1 = (x) (-x),  ϕ2 = 4(x,-x),  ϕ3 = 2(x)2(-x),2(y), 2(-y),  ϕrec = 2(x) 2(-x),2(y)2(-y), and in the second spectrum 
ϕ1 = (x) (-x),  ϕ2 = 4(-x,x),  ϕ3 = 2(x)2(-x),2(y), 2(-y),  ϕrec = 2(-x) 2(x),2(-y)2(y). Typical settings are: relaxation 
delay, 5 s; presaturation, 1.5 s; power level, 60 dB: gradient pulses G1, 1 ms duration with 50 G cm-1, G2, 1 ms and -
10 G cm-1; presaturation during mixing time d8; sine gradient shape; delay for gradient recovery d16, 8 ms. Mixing 
times τ2 are 10 ms, 20 ms, 0.8 s, 1 s. 
(b) Diffusion weighted NOESY-type spectrum for editing the intensity of the water signal. The phase cycle is: 
φ1 = (x)(-x), φ4 = (y)(-y), φ2 = 8(x)8(-x), φ3 = 2(x)2(-x)2(y)2(-y), and φrec = (x)2(-x)(x)(y)2(-y)(y)(-x)2(x)(-x)  
(-y)2(y)(-y). Relaxation delay, 1 s; gradient pulses G1, 1 ms, 50 G cm-1, G2, 4 ms, 80 G cm-1 (first experiment) and 
50 G cm-1 (second experiment), G3, 1 ms, -10 G cm-1; mixing time, 10 ms; delay for gradient recovery, 0.5 ms; 
gradient shape, sine. 
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different spectra where the signals of the solute 
and the solvent are weighted differently.  
The set of mixtures (NMR spectra) can be 
represented as a matrix X = (x1, x2)T 

  

                         
                                                               (2)

where X is the (2 x N) matrix of observations (i. e. 
the two one-dimensional NMR spectra) at each 
value t = 1,…,N, while A is the (2 x m) mixing 
matrix and S is the (m x N) matrix containing the 
m independent source signals (the solute and the 
solvent) at each time point t.  
In principle, ICA tries to find the inverse matrix 
A-1 that solves the problem. However, in general, 
mathematically a unique solution of eq. 2 does not 
exist and additional conditions have to be fulfilled 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

microphone is a linear superposition of the signals 
coming from many different sources (talking 
persons attending the party). These signals can be
decomposed when not only one microphone is
present in the room but there are many microphones 
at different locations. The ICA works by finding a 
transformation of the measured signals (mixtures) 
that produces independent components (sources), 
assuming that each of these independent signals is 
associated with a different physical process. The 
general scheme is depicted in Fig. 2. 
Considering the signals of two different sources, 
denoted by s1 and s2, the linear superposition xi(t) 
detected at microphone i can be expressed as 
follows: 

xi (t) = ai1s1(t) + ai2s2(t)       (1)

The number of detected signals xi must be at least 
equal to the number of sources to be separated. In 
our application, we would need at least two 
 

Fig. 2. Schematic description of ICA and SSA applied to NMR data. Application of ICA requires a set of n 
one-dimensional spectra with different contributions of the solvent signal. It performs the separation of the 
frequency domain data in two main components, the solvent and the solute signals that need to be (automatically) 
recognized. SSA uses only one of the FIDs as input. The points belonging to the group delay are excluded and 
afterwards a trajectory matrix containing M shifted versions of the FID is generated. The algorithm extracts the M 
components and nullifies that one corresponding to the signal with the highest variance (the solvent). An inverse 
reconstruction process is then applied by the SSA and a new FID is built. The points belonging to the group delay 
are re-appended at the beginning of the FID, then it is Fourier transformed, phase corrected in accordance with 
time shift due to the group delay and baseline corrected. The ICA avoids all the previously described procedural steps. 
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                                                               (3)

The de-mixing matrix U is usually found by 
optimizing cost functions that measure the non-
Gaussianity (i. e. kurtosis and negentropy), the 
independence or the maximum likelihood of the 
extracted components.  
Since there are several cost functions, different 
ICA methods have been developed such as the 
FastICA [42], the InfoMax [43] and the JADE 
[44] algorithms. In particular, the former has been 
used in this work since it allows a faster and 
more reliable learning procedure with a cubic 
convergence. In our experience, the FastICA 
algorithm produces the optimal decomposition 
within a smaller computational time than the other 
algorithms applied on the same dataset. 
ICA gives more stable results when at least part of 
the component signals are separated somewhere 
in the dataset. This is the reason why generally the 
frequency domain NMR signal is preferred to the 
time-domain NMR signal. In the applications 
discussed in the following, the solvent signal 
needs to be separated from the solute signal. This 
reduces the number of sources m to be estimated 
to two. This condition only holds when proper 
experimental conditions (pulse sequences) are 
used. Otherwise, experimental artifacts have to be 
(at least partly) corrected by assuming more 
components. In SSA, usually the component with 
the largest eigenvalue is removed for solvent 
suppression, while in ICA the component 
containing the water signal in the center of the 
spectrum must be removed after a direct 
inspection of the data. In particular, ICA produces 
a permutable output with scaling and sign 
ambiguities, which must be evaluated directly by 
the user or by an adjunctive method for the 
automated recognition of the components. In the 
practical problems discussed below, the solvent 
signal is centered in the spectrum, whereas the 
solute signal is mainly located in other regions of 
the spectrum. This feature can be easily used for 
 

by the data (and regarded by the experimental 
scheme) to assure the identification of the underlying 
components. 
In order to estimate the coefficients aij it must be 
assumed that the source signals s1 and s2 are 
statistically independent, hence de-correlated, for 
each value of the parameter t. Furthermore, only 
one of the components can have a Gaussian 
distribution which represents the Gaussian noise 
that is assumed superimposed onto all signal 
channels. In addition, it is advantageous but not 
required when all rows of X are linearly 
independent i. e. at least the intensity and/or the 
phase (in complex data) of one of the source 
signals differ in all spectra. 
For finding a unique mathematical solution of the 
problem, additional conditions have to be imposed 
that do not restrict the experimental data structure. 
Since multiples of the independent source vectors 
also represent valid solutions of eq. 2, the 
identified components should be whitened. This is 
achieved by two operations: the constant offset of 
the mixed signals is removed by subtracting the 
row-wise mean of X from the observation matrix 
(zeroing) and the variances of the individual 
source vectors (rows of S) of the solution are 
normalized to 1. Due to the whitening process, a 
new orthogonal mixing matrix Ã is obtained 
whose free parameters to be estimated are notably 
reduced from N2 to N(N-1)/2. Instead of 
estimating any arbitrary full-rank matrix A, the 
orthogonal matrix Ã can be estimated more easily. 
However, note that the total transformation, 
including the whitening, is in general represented 
by a non-orthogonal matrix. The above restrictions 
help to solve the mathematical problem but do not 
solve the inherent ambiguity of the problem that 
the “true” complex amplitude of the source 
signals is not defined. However, under special 
conditions this amplitude factor can be calculated 
for a certain component. In NMR spectroscopic 
applications the amplitude can be obtained by 
fitting the calculated ICA component of interest to 
a spectrum whose intensity is unperturbed. 
After calculating the mixing matrix Ã, its inverse 
U is computed and the sources are obtained as 
follows: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The intensity of the water artifact has been set 
to 50% of the strongest spectral component, a 
condition where SSA starts producing spectral 
artifacts. As discussed above, the ICA requires at 
least the same number of different spectra as the 
number of independent components in the spectra. 
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the selection of the proper component and the 
calculation of the correct scaling. 
In Fig. 2 the one-dimensional NMR data separation 
by ICA is compared with the removal of the 
solvent artifact by SSA. The ICA simply does not 
require all the previously described pre- and post-
processing procedural steps typically used by the 
SSA algorithm, since it is applied directly in the
frequency domain. For instance, the group delay 
points at the beginning of the FIDs must not be 
removed before the decomposition and the 
trajectory matrix containing shifted versions of 
the FID is not built. However, the exact number of 
those points belonging to the delay is implicitly 
calculated by the software TOPSPIN during the 
experimental acquisition, in order to apply a first 
order phase correction into the spectrum coherently 
with the group delay information without any user 
intervention. In such way, the undesired effect of 
arising wiggles in the frequency domain is 
avoided and the spectrum is not distorted. All the 
steps concerning the group delay management 
need to be taken in account only if dealing with 
time domain data, as in the SSA case. It implies 
that ICA is faster than SSA avoiding those pre-
processing steps. The zero meaning and the 
whitening of the Fourier transformed signals are 
automatically applied by the FastICA algorithm. 
Moreover, it is assumed that the spectra have been 
already baseline and phase corrected before 
applying the ICA removal procedure, thus they do 
not need any further automated correction.  
 
RESULTS AND DISCUSSION 

Application of ICA to synthetic phase and 
intensity modulated spectra. 
Since ICA needs as input at least as many 
experiments as the number of sources to be 
separated, one has to produce at least two 1D 
datasets where the two components (solute and 
solvent) have different weights (i. e. intensities 
and/or phases) in case of complex NMR data. 
Fig. 3a and Fig. 3b (zoom of the solvent region of 
Fig. 3a) show a synthetic dataset where a water 
artifact with different phases and/or intensities 
was mixed to a simulated spectrum of HPr protein 
from Staphylococcus aureus containing in addition 
artificial white noise (b traces). The water signal 
at 4.7 ppm is surrounded by dashed lines in Fig. 3.
 
 

Fig. 3. Synthetic protein test spectra for application 
of SSA and ICA. Synthetic spectra were calculated by 
adding to a simulated spectrum of HPr (H15A) from 
S. aureus a weak experimental water signal (highlighted 
in the center of the spectra) with different phases and/or 
intensities. (a) complete spectra, (b) zoom of the spectra 
in the range of the solvent artifact. Description of the 
traces: (a) back-calculated spectrum without any 
solvent signal; (b) addition of an experimental water 
artifact whose intensity is approximately 50% of the 
strongest resonance of the protein; (c) as (b) but with an 
additional phase shift of the water signal of 90 degrees; 
(d) as (b) but with an additional phase shift of the water 
signal of 180 degrees; (e) as (b) where both the phase 
has been slightly modified by 2.6 degrees and the 
intensity has been additionally reduced by the 10%. 
Mixing time 0.15 s; spectral width 12.65 ppm, 2048 
time and frequency domain data points, exponential 
window multiplication with a line broadening of 3 Hz. 
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When the differences (of the phases of the solvent 
signals) between the two spectra used are only 
very small, the results are not as good as shown in 
Fig. 4. Here, the use of more than two datasets as 
input can help. For example, pure protein spectra 
with a quality of those shown in Fig. 4 can be 
obtained when three spectra with small angle
variations of the water resonance phase of 0, 1.2 
and 1.6 degrees are used for ICA (data not 
shown). When instead the solvent signals of the 
two spectra differ only by the intensities, even a 
 

In the simplest case, only two components have to 
be separated, the water artifact and the signal of 
the compound (e. g. a protein) to be analyzed. 
However, for this goal NMR experiments have to 
be used that influence the intensities and/or phases 
of these two components separately (see Fig. 1) in 
order to obtain the desired independent components.
If the used experiments also influence the signals 
of individual atoms or groups of the compound(s) 
contained in the samples in a non-uniform way, 
the number of spectra needed for ICA must be 
increased correspondingly. 
ICA assuming two components has been used for 
recovering the original HPr spectrum depicted in 
Fig. 3 (a traces) and in Fig. 4 (a traces). The 
complete simulated dataset as well as a zoom of 
the solvent signal region is shown in Fig. 3. An 
experimental water signal has been added to the 
simulated protein spectrum, as shown in Fig. 3 
(b traces). The phase of the additional water signal 
has been changed by 90° (Fig. 3, c traces) and by 
180° (Fig. 3, d traces) before mixing it with the 
artificial protein spectrum. In Fig. 3, e traces, both 
the intensity and the phase of the solvent artifact 
have been changed. The results of an application 
of ICA or SSA to the dataset are shown in Fig. 4a 
and their zoom in the artifact region is reported in 
Fig. 4b. The Fig. 4 (b traces) shows the result of 
ICA when a 90° phase shift is applied to the second 
spectrum (ICA applied to the spectra shown in 
Fig. 3, b and c traces). Fig. 4 (c traces) shows the 
result of ICA when a large phase shift of 180° is 
produced (ICA applied to the spectra shown in 
Fig. 3, b and d traces). In Fig. 4 (d traces) is reported 
the result of ICA when both intensity (reduced by 
the 10%) and phase (2.6°) are modified by the 
pulse sequence (ICA applied to the spectra shown 
in Fig. 3, b and e traces). Finally, in Fig. 4 
(e traces) the result produced by the SSA applied 
to the spectrum described in Fig. 3 (b traces) is 
reported. The investigated cases clearly demonstrate 
that ICA can recover almost perfectly the 
unperturbed signal when the two original spectra 
contain a relatively weak solvent signal (that is 
unfavorable for SSA). The optimal recovering 
was obtained by 180° shift of the solvent signal in 
the second spectrum or by a moderate intensity 
variation.  SSA gives a clearly inferior recovery of 
the signals superposed by the solvent signal.  

Fig. 4. Application of SSA and ICA to a synthetic 
one-dimensional dataset of the HPr protein from 
S. aureus (H15A). ICA and SSA have been applied 
to the spectra shown in Fig. 3. (a) complete spectra, (b) 
zoom of the solvent region. Description of the traces: 
(a) original back-calculated spectrum without any 
solvent signal; (b) ICA assuming two sources applied to 
the two spectra shown in Fig. 3, b and c traces; (c) ICA 
applied to the two spectra shown in Fig. 3, b and 
d traces; (d) ICA used on the two spectra shown in 
Fig. 3, b and e traces; (e) SSA with an embedding of 20 
components applied to the spectrum shown in Fig. 3, b 
trace. The residual water signal is highlighted. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to a complete removal of the solvent signal at 
4.7 ppm (Fig. 5a) and influences also the resonances 
in the vicinity. They are either completely 
suppressed or distorted. An example is the protein 
resonance at 4.3 ppm (Fig. 5c) that is completely 
suppressed. Increasing the number of extracted 
and nullified components could improve the 
performance of SSA. As demonstrated recently 
[28], the optimal removal of the solvent and 
recovery of signals close to the solvent resonance 
by SSA is reached when the solvent artifact is 
approximately twice as strong as the most intense 
solute signal. In contrast, ICA applied to the 
corresponding set of spectra results in a perfect 
recovery of all protein resonances (Fig. 5b) that 
were completely superposed by the strong water 
resonance. 
The performance of ICA was tested systematically 
for the synthetic dataset described above by 
variation of the intensity and/or phase of the 
solvent signal added to the protein spectrum 
(Fig. 6). Firstly, a synthetic spectrum of the HPr 
protein was added to an experimental solvent signal 
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small variation produces an almost optimal 
recovery of the resonances of interest. In general, 
experimentally either large phase variations or 
small intensity change of the components to be
separated should be generated by the pulse 
sequence in question whenever possible. Only when
this is not suitable, more than two spectra should 
be used to separate the components. 
The result is different when a complex SSA is 
applied to these spectra. SSA needs as input only 
one time domain signal. As an example the time 
domain signal corresponding to the spectrum 
depicted in Fig. 3 (b traces) was used with a SSA 
embedded in a 20 dimensional space. Although 
the water signal is almost completely removed, as 
demonstrated in Fig. 4 (e traces), the resonances 
under the water signal are not optimally recovered 
and some of the neighboring signals are distorted. 
Often SSA produces also artifacts in other parts of 
the spectrum when the water signal is not the 
strongest signal in the spectrum [28]. Such an 
effect has not been observed in our example, 
whose water intensity was the half of the strongest 
protein resonance in the spectrum. A major 
reduction of the intensity of the solvent signal (as 
shown in Fig. 3, e traces) would produce such 
artifacts, destroying the strongest parts of the 
protein spectrum (data not shown). In all other 
cases (c and d traces of Fig. 3), the SSA produced 
similar results to those ones shown here in Fig. 4 
(e traces). 
SSA is a powerful method when a strong water 
signal is present [27, 28], but also in such 
favorable cases it can result in a too strong solvent 
suppression and spectral distortions in the vicinity 
of the water signal. This can happen when an 
inadequate number of components are extracted 
and are successively nullified. We tested that in a 
spectrum corresponding to that one shown in Fig. 
5 (c trace) where the water signal was 100-times 
stronger than the strongest protein signal in the 
spectrum. Fig. 5 shows again that SSA (a trace) as 
well as ICA (b trace) produce a strong reduction 
of the water signal around 4.7 ppm. For the 
application of ICA a second spectrum was 
generated where the intensity of the water signal 
was reduced by 30% but was still 70-times stronger 
than the strongest resonance of the protein. SSA 
with a default embedding of 20 components leads 
 

Fig. 5. Application of SSA and ICA to a spectrum 
containing a strong solvent artifact. Part of a one-
dimensional NOESY-type NMR spectrum of the HPr 
protein from S. aureus (H15A) back-calculated from 
the 3D-structure and the known chemical shifts with 
RELAX-JT2. A water signal that was 100-times more 
intense than the strongest protein signal and Gaussian 
noise were added to the synthetic data before Fourier 
transformation. In a second spectrum a water signal that 
was reduced by 30% was added.  (a) SSA applied to 
the first spectrum, (b) ICA applied to the two spectra, 
(c) the back-calculated spectrum without any solvent 
addition. 
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whose maximum intensity was twice larger than 
that one of the strongest protein signal which 
represents the optimal case for solvent removal by 
SSA [28]. As a measure of the performance, the 
L2-norm of the point-wise difference between that 
protein spectrum obtained before the solvent
suppression and the original simulated spectrum 
(without any experimental water) was used. The 
norm of this spectrum was set to 1. As a bench 
mark SSA is able to reduce the L2-norm by 
approximately 89% (SSA in Fig. 6). Quantitatively, 
similar results can be obtained when a second 
spectrum is used by the ICA where either the 
phase of the water signal is strongly shifted (in the 
range between 160 and 180 degrees) or a small 
phase change (i. e. 2.4 degrees) of the solvent 
signal is accompanied by a remarkable intensity 
reduction (in the range of about 24% and 50% of 
the initial solvent signal (P2.4-I24 and P2.4-I50 in 
 

Fig. 6. Dependence of the performance of ICA and SSA on the type of inputs. Synthetic datasets were created 
as described in Fig. 3 but phases and intensities were varied over a wide range of conditions. As a measure for the 
performance the L2-norm was calculated for the difference between the pure protein spectrum and the spectrum 
obtained after the addition of a solvent signal that was twice intense than the strongest protein signal (first 
spectrum). The L2-norm of the point-wise differences of these two spectra was arbitrarily set to 1. The result after 
application of SSA is labeled as (SSA). ICA has been applied to a dataset consisting of the first spectrum and 
additional spectra where the phase (P) and/or the intensity (I) were varied. (Px) means that the phase of the water 
signal was shifted relatively to the first spectrum by x degrees. (Ix) means that the intensity of the water signal was 
reduced by x% of the intensity in the first spectrum.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6) that correspond respectively to a ratio of 
1.64 and 1 between the solvent and the strongest 
solute signals). However, in the ICA cases, close 
to the resonance frequency of the solvent, the 
protein spectrum is much better reconstructed, 
analogously to the data shown above. A notably
better result is obtained when the water phase in 
the second spectrum is shifted by 180 degrees 
(P180 in Fig. 6). Here a reduction by 96% is 
reached. Similar results are obtained with different 
scenarios, e. g. when only the intensity of the 
water signal in the second spectrum is slightly 
reduced, even just by 1% of the initial solvent 
signal (I1 in Fig. 6).  
Inspecting the results obtained from the simulated 
dataset, one can conclude that ICA is a powerful 
method to separate the water artifact from the true 
signal when ideal conditions are met, namely that 
the spectra used are composed of two components 
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with mutual phase and/or intensity modulation but 
no solute signal variations. If the solvent signal is 
rather weak, the wanted signal(s) can be virtually 
completely recovered (Fig. 4, c and d traces). 
In contrast, in case of weak solvent signals SSA 
leads to spectral distortions. 
 
Application of ICA to experimental spectra 
with phase and intensity modulation 
In experimental spectra the ideal conditions usually 
cannot be established perfectly and the result is 
expected to depend on the sample as well as on 
the pulse sequence used. The pulse sequence has 
to manipulate the components to be separated in a 
different way. This can only be done when the 
corresponding spin systems are characterized by 
different NMR parameters. One possibility is the 
use of differences in longitudinal relaxation times 
T1 between solvent and solute. A simple way to 
use this property is the application of the typical 
NOESY-type pulse sequence that is generally 
used in metabolomic applications of NMR 
(Fig. 1), with different mixing times. At high 
Q-values of the receiver coils the water signal 
relaxes much faster than the solute signal because 
of radiation damping and can therefore be 
separated from the solute signal. This effect 
should be especially prominent for short mixing 
times. Fig. 7 shows the results of SSA and ICA 
applied to experimental NOESY-type 1D spectra 
of small molecules recorded with different mixing 
times. One has to mention that the urine spectra 
are used here only as an example for testing the 
performance and side effects of the two methods. 
In practice, in urine spectra the signals of the 
metabolites are rather strong compared to the 
water signal suppressed by the NOESY-type 
sequence. Additional data post-processing usually 
is not required here.  
The phase and intensity of the water signal strongly 
depend on the mixing time. ICA was applied to 
the pair of spectra with short mixing times and to 
the pair with long mixing times. In addition, SSA 
has been applied separately on the experiments 
with a mixing time of 10 ms and of 1000 ms, with 
M= 40.  In the experimental dataset with the short 
mixing times, the water signal is still much 
stronger than the remaining signals. Here, SSA 
provides a strong suppression of the solvent signal 
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(Fig. 7a). The most visible disadvantage of SSA is 
again that the signals very close to the water 
resonance are remarkably attenuated. In the 
dataset with the longer mixing times (Fig. 7b) the 
water signal in the original spectrum with a 
mixing time of 1 s is not the strongest signal 
anymore. Therefore, SSA erroneously removes the
strongest solute signals. In both cases, ICA leads 
to a strong reduction of the solvent signal without 
any distortion or attenuation of the wanted signal 
and clearly represents the superior method. When 
ICA is used to a pair of spectra with a short 
mixing time and a very long mixing time, no 
satisfactory results are obtained. This is probably 
due to the fact that the long selective irradiation 
during the mixing time strongly modifies the 
shape of the solvent signal compared to the shape 
obtained at the short mixing time and thus destroys 
the precondition for a successful application of 
ICA. Instead of varying the mixing time it is also 
possible to create two spectra with solvent signals 
with different signs by using different phase 
cycles (see Fig. 1a).  Theoretically, this method 
creates ideal conditions for ICA but field 
inhomogeneities create regions where radiation 
damping is small. In these parts, the required 
inversion of signs does not work. The obtained 
results are comparable to those shown in Fig. 7. 
For many applications the most important 
property of ICA is that it can recover resonances 
that are hidden below the water artifact when a 
proper pulse sequence is used. We have already 
shown that ICA spectra work almost perfectly for 
ideal synthetic datasets (Fig. 5). For obtaining 
similar conditions, in protein NMR spectroscopy, 
diffusion weighting (Fig. 1b) turned out to be the 
optimal method to obtain spectra with differential 
attenuation of the remaining water signal. As an 
example the experimental diffusion weighted 
NOESY-type spectra of HPr from S. carnosus 
were recorded (Fig. 8). The insert in Fig. 8a 
shows the water signal in the two spectra used for 
ICA that is differently attenuated. SSA strongly 
reduces the water signal and leads to a clear 
improvement of the spectral quality. However, 
protein resonances close to the water resonance 
are not visible. In contrast, the protein signals 
superposed by the water resonance can be 
recovered almost completely by ICA (Fig. 8b). 
A simulation of the spectrum from the known 
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Fig. 7. Separation of solute and solvent signal by radiation damping and selective saturation. 
One-dimensional human urine spectra recorded with a NOESY-type pulse sequence (see Fig. 1a) with 
different mixing times of 10 ms, 20 ms, 0.8 s, and 1 s. Relaxation delay, 5 s; 128 K complex time domain 
data points; 64 K frequency domain data points; DQD acquisition mode; 144 time domain group delay 
data points; spectral width, 20.03 ppm; 128 scans. The water signal was saturated by a selective 
presaturation pulse of 5 s and an additional short saturation pulse during the mixing time. (a) ICA applied 
to the pair of spectra with short mixing times (10 ms and 20 ms) and SSA (embedding M = 40) on the 
experiment with a mixing time of 10 ms. (b) ICA applied to the pair with long mixing times (0.8 s and 1 s) 
and SSA used on the spectrum with a mixing time of 1000 ms, with M= 40. The insert shows part of the 
original spectrum measured with a mixing time of 1 s. During this time the water signal has been saturated 
by selective irradiation.  
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Fig. 8. ICA and SSA application on the ICA-tailored one-dimensional experimental spectra of HPr 
protein. The sample contained 1 mM HPr protein from Staphylococcus carnosus in 95% H2O/5% D2O, pH 7. 
Spectra were measured with the pulse sequence shown in Fig. 1b. (a) Original spectra. Gradient weights 
G2: 80 G cm-1, (the solvent artifact shown in lower trace of the insert) and 50 G cm-1, (the solvent artifact shown 
in the upper trace of the box); spectral width, 14.9 ppm; 32,768 complex time domain data points. (b) Spectral 
zoom of the artifact region before (original) and after application of SSA/ALS (SSA) to the first spectrum 
(gradient strength 80 G cm-1) and after ICA applied to both spectra. Before application of ICA, the time domain 
data were filtered by an exponential multiplication corresponding to an additional line width of 0.3 Hz, a phase 
correction was applied and the baseline was corrected by ALS. The back calculated spectrum was simulated with 
the experimental parameters by AUREMOL-RELAX-JT2 [38] from the published assignments and the three-
dimensional structure of the HPr protein [40]. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

structure and chemical shifts by AUREMOL-
RELAX-JT2 [38] is almost identical to that 
obtained after application of ICA. The assignment 
of the recovered resonances to the known 
resonance frequencies shows that in fact a large 
part of the Hα-resonances can be detected. The 
quality of the spectrum after application of ICA 
corresponds to that one recorded in D2O, but here 
no exchange of normal water by heavy water was 
necessary and the resonances of the amide protons 
are still visible. These latter would disappear in D2O. 
 
CONCLUSIONS 
In this work, two post-processing methods (SSA 
and ICA) for the removal/attenuation of the 
solvent signal in NMR spectra are described. Both 
give good results, but have different applications 
and advantages. The SSA is applied on the 
time domain signal (FID) but it needs some 
pre-processing steps (as digitally filtered data 
management) and some post-processing steps (as 
baseline and phase correction). It can be easily 
applied to spectra of any dimensionality in an 
automated procedure, as it is implemented in 
AUREMOL/SSA-ALS [27, 28]. It can be applied 
to any type of NMR spectra. The major limitation 
is that the solvent signal must be clearly more 
intense than any other resonance in the spectrum. 
If this condition is not fulfilled spectral artifacts 
are produced as distortions of the resonances of 
interest close to the solvent signal and suppression 
of the strongest resonances in the solute spectrum. 
Additionally, even when the solvent signal is 
more intense than any other solute signal, SSA 
results in a very strong solvent suppression leading 
to the attenuation of the protein resonances located 
in the artifact region. This effect could be reduced 
varying the embedding dimensions: increasing the 
number of extracted and nullified components. In 
this case the automation would get difficult. ICA 
has demonstrated to overcome those limitations. It 
requires as input more than one experiment with 
different solvent or solute signal intensities and/or 
phases. Optimal results are obtained when the line 
shapes of the solvent and the solute resonances 
are unperturbed but when their relative intensities 
are different in the analyzed spectra. Thus, the 
experimental scheme (pulse sequence) has to be 
optimized for an appropriate application of ICA. 
 

If this is the case, resonances below the water 
signals can be detected with high quality. The 
AUREMOL-ICA is actually an ongoing project 
that has been thought not only for automated 
solvent suppression, but also for other purposes as 
metabolites quantification in diffusion-weighted 
spectra of biofluids. 
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