
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In silico-based direct evolution of peptides and 
peptidomimetics in drug discovery 
 

ABSTRACT 
Because drug discovery efforts have experienced 
a pronounced decline in productivity, novel 
approaches to the rational design of new drugs are 
being introduced and developed. An exciting 
solution is the use of natural or synthetic peptides 
and peptidomimetics targeting protein-protein 
interactions essential for signaling networks 
function. The combination of several bioinformatic 
approaches (docking, virtual screening, 
pharmacophore models, etc.) allows for the use of 
the vast amount of information on protein-protein 
interactions deposited in structural databases. In 
this respect, interacting peptides are susceptible 
to optimization in order to stabilize or disrupt 
protein-protein interactions, providing a promising 
use of peptides and derivatives as therapeutics. In 
this review we illustrate tools and strategies 
currently used in peptidomic drug discovery as 
well as trends in the area of molecular 
pharmacology.  
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INTRODUCTION 
Protein-protein interactions play a central role in 
many biological processes, such as signaling and 
regulatory networks. These interactions have been 
considered as attractive targets for the inhibition 
of specific pathways, commonly involved in  
many pathological processes. Targeting drugs at 
protein-protein interfaces have the advantage of 
modulating signal activity without interfering  
with the catalytic binding sites of the targets [1]. 
Nowadays, the stabilization [2] or disruption  
[1, 3] of the protein-protein interactions is being 
pursued. However, designing small molecules to 
inhibit protein-protein interactions is considered 
an enormous challenge [4]. Traditional High 
Throughput Screening (HTS) has had limited 
success to identify drugs targeting protein-protein 
interactions [5, 6]. Drug discovery efforts to find 
blockers for these targets have encountered 
several challenges: i) large interaction surfaces  
[7, 8]; ii) the surfaces are generally flat, with no 
clear grooves and pockets [3, 9, 10]; iii) limited 
structural information of binding surfaces; iv) 
large thermodynamic barriers for small molecule-
protein binding; and v) absence of appropriate 
compounds in chemical libraries [11]. In spite of 
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amino acid scanning, and pharmacophoric model 
evolution, along with the prediction of absorption, 
distribution, metabolism, excretion and toxicity, 
pharmacokinetic and pharmacodynamic properties 
of candidate lead compounds. 
 
Nature of protein-protein interactions 
Protein-protein contacts have mainly two models 
of interaction: Between two globular domains, or 
between a globular and a linear flexible peptide 
[22]. There is not an easy way to derive peptides 
from globular interactions, probably due to the 
fact that the interaction surface between globular 
domains is composed of residues which are 
brought together by the tertiary structure. Since 
important residues are not contiguous in the 
polymer chain, no linear sequence can be easily 
extracted. Furthermore, an inhibitory peptide 
should compete with a large interaction surface. 
On the other hand, a small number of hot spots 
are the major contributors of protein binding 
interaction. These hot spots represent less than 
half of the contact residues and are usually located 
at the centre of the interacting surface [4]. 
Therefore, the design of inhibitory peptides from 
this kind of surfaces by targeting only the hot 
spots is plausible [11]. The advantages are clear: 
First, the specificity, since they are derived from 
the native interaction; and second, the small size, 
which increases the competitive binding by 
raising the effective peptide concentration at the 
interface [4]. For these reasons, peptide fragments 
derived from crystal interfaces of protein-protein 
interactions are the major sources of inhibitory 
molecules [11]. The peptide conformation with 
the higher success has been α-helices [23, 24], 
probably due to the lower entropic cost paid upon 
peptide binding. Nevertheless, other conformational 
structures have been successfully assayed, such as 
hairpin structures and miniproteins [23, 24]. 
Interactions between globular proteins are often 
dominated by a single high-affinity linear peptide 
segment [25]. These are linear amino acid 
stretches derived from one of the partners in the 
interaction. These peptides derive from loops 
within globular domain, disordered linker regions 
or protein termini [25]. Within many of the 
abundant disordered regions in proteins, linear 
peptides are responsible for thousands of cell 

this, small molecules still dominate the drug 
discovery for ion channels, receptors and 
transporters. 
Biological drugs (such as peptides, peptidomimetics, 
antibodies and proteins) are now emerging as 
powerful tools for the discovery of inhibitors 
directed to protein-protein interactions. The use 
of antibodies as protein therapeutics against 
membrane-bound receptors or secreted proteins 
has been very successful [12] although limited to 
extracellular targets because of the difficulty for 
their intracellular uptake [13]. On the contrary, 
peptide and peptidomimetic therapies could, in 
principle, represent an extension of both, the 
small molecule and protein therapies, due to their 
unique structural properties and the recent 
advances in formulation, delivery [13, 14], and 
chemistry [15]. These molecules, that do not 
necessarily comply the Lipinski’s [16] or Veber’s 
[17] rules, are suitable for targeting large 
interfacial areas in protein-protein interactions. 
Conversely, peptides are being used to study 
protein-protein interactions [18] since they can 
be easily synthesized, hot spots are precisely 
identified, and post-translational modifications or 
non-natural amino acids can be introduced. 
The advantage of peptides over protein or 
antibodies application is clear: Peptides can 
penetrate deeper into tissues, they are less 
immunogenic, and they have higher activity per 
unit mass and lower manufacturing costs [19]. 
The use of peptides over small molecules has also 
several benefits: Peptides offer great efficacy, 
selectivity and specificity [20]; the degradation 
products are amino acids, thus reducing the 
systemic toxicity [21]; peptides do not accumulate 
in tissues because of their short half-life; and 
small quantities of them are needed to modulate 
their receptor targets [19]. 
So, this work aims at reviewing the current 
methods and the computational techniques 
employed to derive inhibitory peptides and 
peptidomimetics from protein-protein interactions 
as a general mechanism to block the recognition 
partners. These compounds can be used as 
promising leads for the rational design of 
therapeutic drugs. Nowadays, the computational 
techniques employed in the peptidomic field 
include docking and virtual screening, virtual 
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[30]. Diverse studies have analyzed the protein-
protein interaction networks [31]. Today, the 
structural representation of protein complexes is 
limited in the Protein Data Bank [32], and there is 
a need to combine experimental methods (X-ray, 
nuclear magnetic resonance (NMR), electron 
microscopy (EM)) and computational predictions 
(docking, virtual screening (VS), bioinformatics, 
etc.) to expand the structural information of 
protein assemblies [33]. A great challenge is the 
creation of high quality models from low-
resolution images, homology models of separated 
fragments of proteins, and any other source of 
biochemical information on interaction, expression 
data, etc. [34]. Recent developments in the field of 
structural bioinformatics applied to the modeling 
of protein interactions and complexes, from large 
macromolecular machines to protein-protein or 
protein-peptide interactions, were reviewed by 
Stein et al. (2011) [35]. 
Some databases collect the available high 
resolution three-dimensional (3D)-structures of 
known protein-protein interactions: 3did contains 
known high-resolution 3D structures [36]; PepX is 
a database of peptide-protein complexes [37]; 
BriX has protein building blocks for structural 
analysis, modeling and design, containing protein 
fragments from 4 to 14 residues [38]; 3DComplex 
offers three dimensional complexes classification 
[39]. Regarding the structure-based prediction of 
peptides to inhibit protein-protein interactions, it 
is interesting to note that the “absence” of 
structural information is the general rule for a vast 
amount of proteins, including membrane proteins 
and channels. There is, however, a key factor that 
helps us to escape from this and allows the design 
of blocking molecules: Peptide binding motifs 
strongly resemble the intramolecular packing 
motifs [40]. Thus, looking at the inside of 
crystallized monomeric proteins, it is possible to 
harvest the interacting motifs in order to model 
protein-peptide interactions, thus significantly 
increasing the templates available. Interestingly, 
by using this approach, the sequence homology is 
not a pre-requisite [40]. 
There are mainly two strategies to discover 
peptide leads: Sequence- and structure-based 
approaches, which are commonly used for the 
rational design of peptidic modulators of protein-

interactions. Detailed studies on peptide-protein 
complexes have shown strong packing interactions 
and a large number of main chain-main chain and 
main chain-side chain hydrogen bonds [26], 
which would indicate that this kind of peptides are 
less hydrophobic to avoid aggregation [27] when 
compared to similar peptides in globular-globular 
interfaces. Small peptides (6 to 11 residues) 
usually pose up to 2-3 hot spots residues [27], 
which are crucial for the highly specificity 
observed in most peptides. The study of peptide-
protein interfaces has also revealed that peptides 
are elongated structures that do not induce 
significant changes in their binding partners. The 
majority of these peptides remain unstructured  
in solution [28], and they only adopt a stable 
conformation upon binding to their partners. 
London et al. (2010) [25] analyzed the secondary 
structure of a set of linear segments from 
Benchmark 3.0 [29] and found that 76% displayed 
no defined secondary structure, 20% were α-helix, 
and only 4% were β-sheets. It is not clear whether 
or not the isolated inhibitory peptides adopt the 
same binding conformation as in the original 
domain, although docking experiments with 
FlexPepDock have shown that a large number of 
peptides presented a near-native conformation, 
concluding that they will adopt a similar structure 
when cut out of their protein context [25]. 
 
Deriving peptides from protein complexes 

Approaches to discover lead compounds 
Protein-protein interactions are therapeutic targets 
since these interactions govern cellular functions. 
Peptides can modulate protein-protein interactions 
as agonists or antagonists, making them attractive 
tools to identify lead compounds. In addition, 
peptides can also modulate the oligomerization 
state of proteins [18]. Figure 1 depicts 
schematically different ways to affect a protein-
protein interaction by a peptide. 
Targeting protein-protein interactions by large 
molecules (peptides and peptidomimetics) needs 
the adaptation of accompanying disciplines such 
as suitable methods of compound synthesis, 
development of biochemical assays to monitor 
protein-ligand modulation, and computational 
methods to analyze the interactions at atomic level
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Figure 1

Figure 2
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inhibitors are small molecules directed to the ATP 
binding site [42] with poor selectivity [43, 44]. 
Looking at the protein-protein interfaces of 
kinases, several regions can be selected, such as 
the catalytic and regulatory domains, the SH2-
ligand complex, the substrate binding pocket, and 
the activation loop. There are many studies 
dealing with the search of these inhibitors, 
especially with kinase-substrate interactions, since 
the substrate binding site of protein kinases is less 
conserved than the ATP binding site, thus 
providing an opportunity to design blockers with 
enhanced specificity [45-47]. Fujiwara et al. 
(2011) [48] have employed a semi-rational 
strategy, combining phage-displayed libraries and 
de novo designed peptides. They constructed a 
peptide library based on the loop region of a 
helix-loop-helix motif, and screened against 
Aurora-A, a serine/threonine protein kinase, and 
found selective peptides with moderate inhibitory 
activity that in turn could serve for lead 
optimization. 
Other strategy includes phylomers, which 
represent a new class of peptides derived from 
natural protein fragments. Libraries contain billions
 
 

protein interactions. Figure 2 gives a global 
overview of these approaches. 

Sequence-based peptide design 
Several experimental methods are suitable for the 
discovery of protein-protein interactions by 
screening multiple proteins against a single one. 
In this sense, HTS and yeast two-hybrid, mass 
spectrometry combined with tandem affinity 
purification, DNA or protein microarrays are able 
to detect and identify direct protein-protein 
interactions. In addition, databases of already 
known protein-protein interactions are employed 
to derive unknown interactions by homology. 
Once identified a given interaction, the typical 
strategy to derive peptides able to inhibit the 
protein-protein interaction is to mimic the 
sequence of one interacting partner [41], which in 
turn provides the starting point for the design of 
high affinity blockers [25]. 
Inhibition of kinases is an excellent example of 
targeting protein-protein interactions by the 
sequence-based approach. Protein kinases regulation 
is pivotal for cellular function, and its modulation 
has been pursued for many years. However, actual
  
 
Legend to Figure 1. Peptides and peptidomimetics can affect protein-protein interactions in different ways.  
(A) Peptides can act as agonists by replacing the action of protein 1 over protein 2 in cases where protein 1 is less- or 
non-functional, i.e.: Disease, mutagenesis, or low expression. (B) The over activation of a signaling pathway can be 
deactivated by antagonists peptides by mimicking the interaction of protein 1 and 2. Panel (C) describes the tertiary 
equilibrium shift induced by peptides. Protein structural instability is rescued by interacting peptides that stabilize 
the active  state [145]. (D) Quaternary equilibrium shift induced by peptides inactivates the protein by facilitating the 
oligomerization state [129]. Both cases, C) and D), are reviewed in [18]. (E) Disruption of an active oligomer by 
intercalation and association, which facilitates de dissociation of a monomer [4]. 

Legend to Figure 2. Design of peptides and peptidomimetics for therapeutic purposes. This flux diagram represents 
an overview of the methodologies commonly employed to design peptides and their derivatives to interfere protein-
protein interactions. Previous knowledge of protein sequences, structures and/or protein-protein interactions 
contained in the databases is exploited to extract useful information. Two main approaches are depicted: i) the 
experimental (sequence-based) approach (left) takes advantage of the information stored in databases (sequences, 
interaction of homologues, models, etc.), and uses common experimental techniques able to determine new protein-
protein interactions. The information obtained contributes to the increase in knowledge of protein-protein 
interactions and at the same time feeds-back the databases; and ii) the in silico (structure-based) approach (right), 
which exploits all three-dimensional information available for protein-protein or peptide-protein interactions. This 
information is used to predict and characterize new protein interaction, further increasing knowledge and feeding 
databases. In addition, random libraries of peptides can be generated by either experimental or in silico techniques, 
and tested using diverse assays. All these approaches allow for the selection of peptides susceptible to become lead 
compounds. The synthesis of single peptides or peptide libraries is followed by ADME/Tox filtering to evaluate 
pharmacokinetic parameters. Additional chemical modifications are usually necessary to improve the 
pharmacokinetic properties of the lead compounds. Those passing all requirements go to clinical trials. 
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using multiple domain-peptide complexes that 
allow the superimposition of several ligands on 
the target. This approach can be only addressed to 
certain proteins highly represented in the Protein 
Data Bank. As an example, Fernandez-Ballester 
et al. (2009) [51] modeled most of the SH3 
domains of S. cerevisiae, and collected 29 ligand 
conformations from structurally available SH3 
domains, to construct all possible ligand-SH3 
combinations. These complexes were used firstly 
to identify key residues determining loop 
conformation in SH3 domains; and secondly to 
construct position-specific ligand binding 
matrices by means of FoldX [54, 55] to determine 
which sequences were favorable for every SH3 
domain. The results, which were validated with 
available experimental data, opened the way for 
genomic-wide scale predictions. In fact, the yeast 
SH3, as well as many other peptide interacting 
domains (PDZ, WW, SH3, SH2, 14-3-3, etc.) 
from different organisms was compiled in the 
database ADAN (http://adan-embl.ibmc.umh.es/) 
together with its predicted sequences and putative 
partners [56]. 
Smith & Kortemme (2010) computationally 
predicted the sequence space of peptides 
recognized by PDZ domains, and validated them 
with a large set of phage display experimental 
data [57]. The study generated an ensemble of 
backbone conformations for profile prediction 
using Monte Carlo simulations and a genetic 
algorithm-based specificity prediction. The authors 
were able to predict wild type with 70-80% 
accuracy, and mutations that increased the binding 
affinity relative to the starting structure, indicating 
that the incorporation of backbone sampling 
improved the accuracy of the predictions. Raveh 
et al. (2010) used a Rosetta FlexPepDock protocol 
for refining peptide-protein coarse models, 
producing high resolution models of sub-angstrom 
backbone quality with small deviations from the 
native structure [58]. 

Binding pocket recognition, docking and virtual 
screening 
In the absence of detailed information on protein-
protein interaction, an anchor residue in the 
binding pocket and implicit backbone movements 
are used by certain algorithms to find peptide 
specificity that is filtered by experimental data
 
 

of distinct phylomers and represent a large source 
of diverse natural secondary and tertiary peptide 
structures. Watt (2006) has derived libraries of 
phylomers comprising random and structured 
peptides encoded by natural genes of bacterial 
genomes, obtaining hits against different targets 
with high affinity [11]. These sequences can be 
refined for affinity and/or specificity with 
standard mutagenesis and in vitro evolution 
techniques [49]. The approach provides a rich 
source of peptides that interact specifically and 
with high affinity with human proteins, allowing 
the comprehension of discrete interactions within 
the interactome, and the development of effective 
drugs targeted to particular protein functions. 
A different approach for protein ligand screening 
was the use of limited proteolysis and MALDI-
TOF mass spectrometry [50]. In this work a 
combinatorial library of 8000 peptides attached 
to a poly-Pro framework was screened against 
the SH3 domain of the Abl protein. The results 
were later contrasted with computer modeling, 
demonstrating the sensitivity, specificity, speed 
and low sample consumption of the methodology. 

Structure-based peptide design 
The computational design of peptides to interfere 
with protein interactions has been recently 
reviewed by Vanhee et al. (2011) [27]. The most 
common methodology directly uses a peptide-
protein complex structure or employs this 
structure as template to model a relative 
homologue. In addition, these complexes can be 
used to optimize the peptide interaction by fixing 
the ligand backbone, and by using a sequence 
space search algorithm to change the ligand 
affinity and/or specificity [51, 52]. 
There are many successful examples of peptides 
interfering with protein interfaces, either as 
agonists or antagonists that have been derived 
with computational tools taking advantage of 
the 3D structure. For instance, the activation of 
the formyl-peptide receptor-like 1 (FPRL1) has 
beneficial effects in the therapy of inflammatory 
diseases. Hecth et al. (2009), using a computational 
platform of prediction, derived a 21-residue 
peptide that activated the receptor and displayed 
anti-inflammatory activity in vivo [53]. 
Other strategies, as noted by Vanhee et al. (2011) 
[27], tackle the peptide backbone flexibility by
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the fact that many linear motifs have a well 
defined docking region, but a more variable area 
for the residues flanking the motif [74]. The work 
by Niv & Weinstein (2005) [75] is based firstly on 
the knowledge of an anchoring point between the 
peptide (the α carbon of the peptide C-terminus) 
and the protein (PDZ domains), and then by the 
use of simulated annealing molecular dynamic 
approach. The conformational space is explored 
by heating the complex and cooling different 
backbone conformations. After side chains 
optimization, the complexes are minimized and 
scored by theoretical binding energy, yielding 
acceptable results [75]. Other studies accurately 
predicted docking and optimized peptides against 
MHC by means of a flexible all-atom model of 
the entire peptide and an energy minimization 
method [76]. In general, the limitation of the 
conformational space using constraints is often 
crucial for successful ligand docking. These 
constraints are usually derived from experiments 
such as NOE data [77] or any other source of 
biological information, like knowledge-based 
conserved positions [75]. 
There are recent examples of successful peptide 
docking that show the reliability of the method. 
Unal et al. (2010) used a novel de novo peptide 
design approach to block diverse protein-protein 
interactions [65]. The method sequentially constructed 
the peptide by generating all possible peptide 
pairs and determining the binding energies by 
means of AutoDock [78]. A Hidden Markov 
model using the Viterbi algorithm decoding is 
employed to obtain the best fitting peptide for a 
given surface [65]. London et al. (2010) derived 
candidate inhibitory peptides by first screening 
for high-affinity linear segments on the interfaces 
of globular domains, and then by using peptide 
docking experiments to assess the peptide interaction 
on the same region, irrespective of the context of 
the original peptide domain [25]. The authors 
employed a protocol for flexible peptide docking, 
FlexPepDock [58], and an energy funnel analysis 
to present an elaborated framework for in silico 
selection of the inhibitory peptides derived from 
multiple protein interactions. Hussain et al. (2011) 
combined molecular dynamic simulations with 
virtual peptide screening to identify a series of 
potential binders for the Elk-1 transcription factor 

[59]. However, computational costs of this 
method strongly limit its use, opening the door to 
other methods, such as binding pocket 
recognition, docking and virtual screening, as 
alternative approaches in a wide-scale screen. 
The localization of the binding pocket is 
important because it can be targeted by drug 
discovery. Several approaches to determine the 
structural active sites have been reported [60], 
suggesting many parameters to characterize 
binding pockets, as pocket compactness, surface 
roughness and complexity, and total surface 
area [61]. As an example, ICMPocketFinder [62] 
was used to explore pockets in modeling neuro-
transmitter transporters [63]. This strategy defined 
the determinants of rho1-GABA(C) receptor 
assembly by detecting the binding surfaces on  
the ligand-gated ion channel located in the 
transmembrane region [64]. Unal et al. (2010), 
using known protein-peptide inhibitors complexes, 
determined the binding site on the protein via a 
coarse-grained Gaussian Network Model [65]. 
Interestingly, Tseng & Li (2011) developed an 
evolutionary approach to predict the binding site 
residues of proteins from primary sequences [66], 
which is of particular interest for membrane 
protein, such as ion channels, since protein 
databases have scarce structural information on 
them. 
The ability for docking methods to place ligands 
into a known native structure has been evaluated 
in an excellent review [67] as well as other reports 
[68-71], including peptidic modulators [30]. A 
successful docking approach includes flexible 
ligand search approximation, which takes into 
account the ligands degree of freedom, typically 
higher for peptides than for small molecules. 
There are three categories of algorithms that 
include ligand flexibility: Systematic, random or 
stochastic, and simulation methods [67]. However, 
few procedures have been developed specifically 
for peptide docking, with impaired results. A 
method that uses a heuristic search of the potential 
energy succeeded in docking tripeptides, but 
failed with longer peptides [72]. A study using 
Monte Carlo sampling failed to dock peptides to 
nuclear receptors [73]. Nevertheless, other authors 
succeeded in docking peptides to proteins by the 
anchoring point approximation. This is based on
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and distribution is determined by a combination 
of physicochemical properties: Chemical stability, 
solubility, hydrophobicity, hydrogen bonds formation, 
and metabolic stability. Nevertheless, peptides are 
amenable to acquire drug-like physicochemical 
and pharmacokinetic (PK) properties such as 
solubility, lipophilicity, metabolic stability, and 
bioavailability. After an active peptide is 
identified, it is usually subjected to chemical 
modifications to increase its potency by stabilizing 
or improving specific properties [18]. The chemical 
optimization is made based on structure-activity 
(SAR) and/or quantitative structure-activity (QSAR) 
relationships of modified peptides to assess 
improvements in bioavailability, resistance to 
proteases, changes in affinity and/or selectivity. 

Peptidomimetics, pseudo-peptides and cyclic 
peptides 
The chemical strategies trying to overcome the 
above described limitations include the development 
of peptidomimetics, pseudo-peptides and cyclic 
peptides. Exhaustive revision of amino acid 
modifications, backbone modifications, global 
restrictions by cyclization and synthetic backbone 
scaffolds can be found in Grauer & Konig (2009) 
[83] and Vagner et al. (2008) [84]. 
Peptidomimetics are non-protein molecules 
designed to mimic a peptide. For the development 
of peptidomimetics it is necessary to understand 
the forces involved in protein-protein interactions. 
The strongest interactions between peptides and 
proteins are based mainly on side chain-side chain 
interactions, which indicates that peptide 
backbone itself is not essential for high affinities 
[83]. This allows for the replacement of the amide 
backbone total or partially by other chemical 
structures. They should conserve selectivity or 
potency while overcoming the susceptibility to 
proteolysis or poor bioavailability of the peptides. 
Several examples are reviewed in Zinzalla & 
Thurston (2009) [85]. 
A pseudo-peptide includes a chemical modification 
in the peptide bond. Peptoids are peptide-based 
backbone and N-substituted glycines for side 
chain residues, resulting in complete protease 
resistance [86]. A positional scanning library of 
N-alkylglycine trimers containing more than 
10,000 compounds allowed for the screening 
 
 

dimer interface [79]. A collection of conformations 
representing the loop dynamics involved in 
dimerization was exhaustively screened against 
peptide libraries. The positive tri-peptides made 
specific interactions with certain residues that are 
pivotal to the dimeric interface, indicating that the 
incorporation of dynamic fluctuations in the 
receptor can help to discover inhibitors. Pang 
et al. (2011) found a short peptide that inhibited 
cyclophilin A in the same range of binding 
affinity as the positive control cyclosporine A 
inhibitor. This short peptide could replace 
cyclosporine A as an immunosuppressant drug 
with better oral availability, solubility and less 
toxicity in clinical applications [80]. 
 
Synthesis, modification and drug-like 
properties of peptides 
Peptides are traditionally considered to be poor 
drug candidates because of their propensity to 
be metabolized as well as their low oral 
bioavailability. Recent advances in synthesis 
and stabilization of peptides have boosted their 
use to interfere protein-protein interactions [18]. 
The technologies employed to synthesize these 
molecules depend primarily on peptide size: 
Recombinant technology, cell-free expression, 
enzymatic or chemical synthesis. The solid-  
phase peptide synthesis [81] revolutionized and 
made available their chemical synthesis by the 
standardization and automation of the protocols. 
In recent years, new synthetic strategies to 
improve productivity and reduce metabolism have 
been developed. Advances in peptide chemistry 
have improved protocols, allowing for the 
synthesis of peptides longer than 200 residues 
[82]. 
The ADME/Tox (absorption, distribution, 
metabolism, excretion and toxicity) parameters of 
peptides are crucial to define the disposition of a 
drug candidate and its potential therapeutic effects 
[19]. As already mentioned, the main limitations 
for the use of peptides as therapeutics are low  
oral bioavailability and rapid degradation by 
proteolytic enzymes (digestive system and blood 
plasma), but also rapid renal and hepatic removal 
from circulation, poor ability to cross physiological 
barriers, eventual risk of immunogenicity, and 
high production costs [19]. The bioavailability 
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In fact, there are examples in which small 
molecules bind to the hot spot in the contact 
surface of the proteins with drug-like potencies. 
These examples have been reviewed by Wells 
et al. (2007), including studies on small molecule 
binders to interleukine 2, B-cell Lymphoma 2 
(Bcl-XL), human double minute 2 (HDM2), 
human papilloma virus (HPV E2), ZipA or 
tumour necrosis factor (TNF) [4]. In most of the 
cases, the small molecules were in the mid- to 
low-nanomolar range, and comparable to the 
binding affinity observed for the native protein 
partners. In addition, these molecules bound deep 
into the interacting surfaces, which is indicative of 
the adaptability of the contact surfaces when the 
partners of a interaction are separated, probably 
due to motions of side chains and small loops 
perturbations [4]. Based on structure-activity 
relationships, non-peptide molecules or 
peptidomimetics can be derived and checked for 
effects on protein-protein interactions.  

A computational tool developed to facilitate the 
search of molecules mimicking peptides is the 3D 
Pharmacophore Model. A protein-peptide structure 
enables for the construction of a pharmacophore 
model, which describes the nature and the 
location of functional groups involved in peptide-
target interactions, including hydrogen bond 
network, hydrophobic and electrostatic interactions. 
[100]. The pharmacophore model can then be 
used to design small molecules mimicking the 
peptide [101, 102]. Briefly, the identification of a 
3D structure of a peptide-protein interaction is 
followed by the construction of a pharmacophore 
query and a conformational library of small 
compounds. The pharmacophore query is searched 
against a library and results are processed to 
establish a ranking of hits. Positive molecules are 
later evaluated and tested for correct matching by 
means of docking [102]. 
Another standard tool commonly used in 
computational screening is the ligand-based method 
Similarity Searching [103, 104]. Basically, a 2D 
similarity fingerprint is applied to peptide-like 
molecules as an alternative method to facilitate 
the peptide to peptidomimetic transition. Two-D 
fingerprint is calculated from the 2D graph 
representation of the molecules, and is represented 
as bit strings, where an individual bit denotes a 
 
 

against a variety of biological targets [87-89], 
including a panel of Gram-positive and Gram-
negative bacteria [90] that led to the identification 
of hits exhibiting antimicrobial activity [91]. 
However, the most successful way to achieve 
peptide stabilization is via cyclization [92], which 
imposes conformational constraints to the peptides. 
Peptide cyclization offers many advantages, such 
as an increased stability [19], protection against 
proteases [93], and an increased affinity [94]. This 
last effect is probably due to reduced entropy of 
the unbound state as a cyclization consequence. 
The cyclization also offers other advantages in 
terms of bioavaliability and cell permeability 
[19, 93]. As an example, Tal-Gan et al. (2001) 
performed an extensive SAR study of a potent 
peptide-based protein kinase B/Akt inhibitor [47]. 
To overcome the lack of pharmacological properties, 
the authors synthesized cyclic backbones peptide 
libraries with varying modes of cyclization, bridge 
chemistry, and ring size. This work found peptides 
10-fold more potent than the corresponding 
linear peptide, and they became promising 
lead candidates with enhanced pharmacological 
properties. The growing data in favor of these 
macrocyclic compounds was reviewed by 
Driggers et al. (2008) [95]. 
Other way for peptide stabilization, i.e. α-helices, 
is by covalent stapling, where one of the main-
chain hydrogen bond is replaced by a covalent 
bond [96], or by formation of a hydrocarbon 
bridge between two consecutive helix turns [97]. 
Other peptide conformation, such as bicyclic β-
turn analogues of Leu-enkephalin, was successfully 
designed and synthesized [98], showing significant 
biological activity. Furthermore, to provide 
proteolytic stability, miniature proteins are used 
as scaffolds to graft a protein binding site [85]. 
Finally, the SPOT synthesis on cellulose sheets 
[99] allowed for the development of stable peptide 
arrays for the study of protein-peptide interactions. 

Transforming peptides into small molecules 
Although this review is focused on the use of 
peptides to overcome the small molecules, we 
should keep in mind that sometimes there are 
powerful reasons to continue using small 
molecules: Practical (easier synthetic protocols, 
more efficiency) and economical (lower costs).
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protein interactions involved in TRPV1 channel 
function [110]. The TRPV1 thermosensory channel 
has a cytosolic domain, referred to as the TRP 
region that is involved in subunit oligomerization 
and functional coupling of stimulus sensing and 
gate opening. In this sense, interfering with this 
protein interface could be used to modulate 
channel function. It was demonstrated that 
palmitoylated peptides (named as TRPducins) 
patterned after the membrane proximal TRP 
domain of TRPV1, behave as moderate and 
selective channel inhibitors. Figure 3 illustrates 
the interacting region between TRPducin and 
TRPV1 channel. 
Yin et al. (2007) described a computational 
approach to design peptides that specifically 
recognize transmembrane helices of natural 
proteins [111]. This methodology selected the 
backbone of a pair of helices derived from 
membrane protein structures, and threaded the 
sequence of the target onto one of these helices. 
The selection of the amino acid sequence in 
the accompanying helix was made by means of 
a side-chain repacking algorithm. The authors 
derived peptides that specifically interacted 
against α-IIb and αV integrins in situ in the 
plasma membrane of platelets. 

Exocytosis 
Neuronal exocytosis is a cascade of protein-
protein interactions that involve several proteins. 
At the center of this process is the SNARE protein 
complex, which includes the plasma membrane 
proteins SNAP-25 and syntaxin, and the vesicle-
associated protein synaptobrevin. This complex is 
responsible for vesicle docking and fusion in 
synaptic terminals. The identification of SNARE 
complex modulators inhibiting exocytosis was 
addressed by Blanes-Mira et al. (2003, 2004) 
[112, 113]. Synthetic peptides patterned after  
the N-terminus of the SNAP25, a component of 
the SNARE complex, were revealed as potent 
inhibitors of the SNARE complex formation 
[113]. In another study to discover SNARE peptide 
inhibitors, an α-helix-constrained combinatorial 
peptide library was synthesized in a positional 
scanning format, and assayed to prevent the 
formation of SNARE in vitro. The most active 17-
mer peptide abrogated the Ca2+-dependent release
 

specific chemical feature or a molecular descriptor. 
This method is also capable of differentiating 
between peptide-like molecules having different 
biological activities [104]. 
Qvit et al. (2008) presented a new approach for 
the conversion of active sequences of proteins and 
peptides into small molecules. In this approach 
they constructed a library of macrocyclic disulfide 
molecules, and preserved the active pharmacophores 
of the parent peptide to perform a systematic 
search for macromolecules in which the 
pharmacophores are in an appropriate conformation 
for biological activity [105]. 

Computational tools 
From a computational point of view, there are 
many tools to accomplish the generation of 
peptides and derivatives, which in turn can be 
used for docking and virtual screening, evaluated 
by binding energy and filtered by ADME/Tox 
properties. There are long lists of software, free or 
commercial, developed for these purposes. Table 1 
shows several examples of software and servers 
available. Villoutreix et al. (2007) reviewed free 
resources to assist structure-based experiments 
[106]. 
 
Selected working examples 

Modulation of receptors and channels 
Cell-penetrating membrane-tethered peptides have 
been used to target intracellular receptor domains 
proximal to the plasma membrane. They were 
derived from the intracellular loops of G protein-
coupled receptors and lipidated with a palmitate 
group [107]. These peptides, coined as pepducins, 
demonstrated their ability to modulate the activity 
of G protein-coupled receptors (GPCR) with high 
efficiency and selectivity [107, 108]. Notably, 
some of them became leads for drug development. 
The recent identification of protease-activated 
receptor 1 (PAR1) as a potential therapeutic target 
in lung cancer was accomplished by the use of 
cell-penetrating pepducins, generated from the 
first and the third intracellular loop of PAR1, 
which were able to block PAR1-RK1/2 signaling 
pathways [109]. 

Recently it was shown that peptides can be 
successfully used to target well-defined protein-
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Table 1. The table compiles selected examples of 3D databases as well as available software tools and servers 
to generate, edit, or modify peptides, comprising computational methods such as molecular dynamics, 
homology modeling, binding site prediction, docking and virtual screening, ADME/Tox prediction, etc., 
among other tools. 

3D protein databases 

Protein Data Bank 
http://www.pdb.org/pdb/ 
home/home.do 

Databank of experimentally-determined structures of proteins and complex 
assemblies 

3did  
http://www.3did.com/ Database containing known high-resolution 3D structures [36] 

PepX 
http://pepx.switchlab.org/ Database of peptide-protein complexes [37] 

BriX  
http://brix.crg.es/ Protein building blocks for structural analysis, modeling and design [38] 

3DComplex 
http://www.3dcomplex.org/ Three dimensional complexes classification [39] 

ADAN  
http://adan-embl.ibmc.umh.es/ 

Prediction of sequences and putative partners in protein-peptides complexes 
[56]. 

Edition and modeling of molecules 

Pymol  
http://pymol.org/ Molecular visualization system written in Python. 

YASARA 
http://www.yasara.org/ 

Molecular visualization program for displaying and building molecules, multiple 
sequence alignments, molecular dynamics, docking, etc. 

Modeller 
http://salilab.org/modeller/ Software for producing homology models of protein tertiary structures 

I-TASSER 
http://zhanglab.ccmb.med. 
umich.edu/I-TASSER/ 

Internet service for protein structure and function predictions 

SWISS-MODEL 
http://swissmodel.expasy.org/ 

Automated protein structure homology-modeling server, accessible via the 
ExPASy 

Molecular dynamics 

NAMD 
http://www.ks.uiuc.edu/ 
Research/namd/ 

Free parallel molecular dynamics designed simulation of large biomolecular 
systems 

GROMACS 
http://www.gromacs.org/ Chemical Simulations. Free open source molecular dynamics simulation package 

Binding site prediction 

ICM-PocketFinder 
http://www.molsoft.com/ 
technology.html 

Binding site predictor provided by Molsoft 

PocketPicker 
http://gecco.org.chemie.uni-
frankfurt.de/pocketpicker/ 
download.html 

Program for the analysis of ligand binding-sites with shape descriptors 

FINDSITE 
http://cssb.biology.gatech. 
edu/findsite 

Threading-based binding site prediction/protein 
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Table 1 continued.. 

Docking and virtual screening 

Autodock 
http://autodock.scripps.edu/ Docking software with flexible ligand and protein side chains capabilities 

MGL Autodock Tools  
http://mgltools.scripps.edu/ Graphical front-end for setting up and running AutoDock. 

GOLD 
http://www.ccdc.cam.ac.uk/ 
products/life_sciences/gold/ 

Genetic algorithm-based docking program. Flexible ligand 

MOE 
http://www.chemcomp.com/ 

Multiple purpose suite of chemistry tools like ligand-receptor docking, ligand 
optimization in pocket, ligand & structure-based scaffold replacement, 
pharmacophore search, etc. 

FlexPepDock 
http://flexpepdock.furmanlab.
cs.huji.ac.il/ 

High-resolution peptide docking (refinement) protocol 

Binding free energy estimation 

X-score 
http://sw16.im.med.umich. 
edu/software/xtool/ 

Program for computing the binding affinities of ligand-target molecules 

FoldX 
http://foldx.crg.es/ 

Program for calculating binding energy of proteins, complexes and mutants    
[54, 55] 

DrugScoreONLINE 
http://pc1664.pharmazie.uni-
marburg.de/drugscore/ 

Web interface for the scoring functions DrugScoreCSD and DrugScorePDB 

ADME toxicity 

ADMET Predictor 
http://www.simulations-
plus.com/Products.aspx?grpI
D=1&cID=11&pID=13 

Software for advanced predictive modeling of ADMET properties 

PrologP/PrologD 
http://www.compudrug.com/
?q=node/42 

ToolServer for predicting the logP/logD values using linear and neural network 
methods 

ToxPredict 
http://apps.ideaconsult.net:80
80/ToxPredict 

Web to estimate toxicological hazard of a chemical structure 

PharmMapper 
http://59.78.96.61/pharmmap
per/ 

Web-server designed to identify target candidates for small molecules 

Free ADME Tools 
http://www.simcyp.com/Prod
uctServices/FreeADMETools/ 

ADME Prediction Toolbox of the SimCYP application 

Peptides extraction and modification 

PeptideMine 
http://caps.ncbs.res.in/peptide
mine/index.html 

Server for design of peptides from protein-protein interactomes [139] 

DockoMatic 
http://dockomatic.sourceforg
e.net/ 

Server for generating cyclic peptide analog structure files based on protein 
database [140] 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
of L-[3H]-glutamate in intact hippocampal 
neurons. Interestingly, this study showed that the 
discovery of peptide sequences is not restricted to 
those that mimic domains of SNARE proteins 
[112]. 
Other studies showed the involvement of regulated 
exocytosis with the inflammatory sensitization of 
TRPV1 ion channel [114]. The small peptide 
EEQMRR, patterned after the SNAP-25 protein, 
was able to inhibit TRPV1 translocation and 
CGRP release in sensory neurons, and displayed 
analgesic activity. These findings supported the 
tenet that SNARE complex-mediated exocytosis 
of TRPV1 may be a valid therapeutic target to 
treat inflammatory pain. 

Cell growth 
The interaction between human p53 and MDM2 is 
a key event in controlling cell growth. Different 
studies have suggested that a p53 mimic would be 
sufficient to inhibit MDM2 and reduce cell 
growth in cancerous tissue. Thus, the inhibition of 
the MDM2-p53 interaction, and the reactivation 
of p53 function is a milestone in controlling cell 
growth [115]. It has been described that a p53 
homologue is sufficient to induce p53-dependent 
cell death in cells overexpressing MDM2 [116]. A 
peptide as short as 6 residues could bind to 
MDM2 in the same manner [117]. Furthermore, 
chemical modifications of that 6-residue peptide 
can dramatically increase its inhibitory activity 
[118]. Zhong and Carlson (2005) examined the 
native binding interface of the MDM2-p53 
complex, as well as the effects of mutants, by 
molecular dynamics simulation and alanine
 

 
 
 
 
 
 
 
 
 
 
 
scanning [119]. They designed a mimic of p53 
based on a β-proline (isomer of α-proline). The 
difference in chirality allowed peptides to resist 
hydrolysis by proteases in the body, giving them 
different absorption, distribution, metabolism, and 
excretion (ADME) properties. More recently, 
Phan et al. (2010) used a crystal structure of an 
inhibitory peptide directed against MDM2 to 
design and test several peptides with inhibitory 
properties [120]. This study discovered a peptide 
with a 5-fold increase in potency, as well as the 
key molecular features responsible for the 
enhanced affinity. Finally, Hu et al. (2011) 
described a new class of oligomers of N-acylated-
N-aminoethyl amino acids, named AA peptides, 
that inhibited p53-MDM2 interaction with 
significant activity and specificity [121]. The 
efforts to inhibit the mentioned p53-MDM2 
complex with peptoids and other molecules of 
different nature have been reviewed by Murray 
& Gellman (2007) [115]. All these molecules 
preserve the structural features of peptides, but are 
resistant to cell degradation. 
Another example is protein kinase CK2 (also 
known as casein kinase II), an ubiquitous 
eukaryotic ser/thr protein kinase present in the 
nucleus and cytoplasm. CK2 is known to 
phosphorylate more than 100 substrates, many of 
which are involved in the control of cell division 
and in signal transduction. Laudet et al. (2007) 
studied the multimeric organization of protein 
kinase CK2 holoenzyme complex in vitro by a 
combination of site-directed mutagenesis, binding 
experiments and functional assays [122]. Using 
the crystal structure of the CK2 holoenzyme, they
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Table 1 continued.. 

CycloPs 
http://bioware.ucd.ie/ Webserver for generating virtual libraries of constrained peptides [141] 

Small molecules from peptides 

SuperMimic 
http://bioinformatics.charite. 
de/supermimic 

Tool for identifying compounds that mimic parts of a protein [142] 

SAAMCO 
http://bioware.ucd.ie/ 

Screening of motifs with known structures against bioactive compound 
databases [143] 

pepMMsMIMIC 
http://mms.dsfarm.unipd.it/ 
pepMMsMIMIC 

Web-oriented peptidomimetic compound virtual screening tool [144] 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

through the amphipathic α-helical BH3 segment, 
an essential death domain. Walensky et al. (2004) 
induced the apoptosis in vivo by developing a 
hydrocarbon stapled BH3 helix being able to bind 
to the Bcl-2 family with increased affinity [126]. 
Another example is the protein complex formed 
between different cyclins and cyclin-dependent 
kinases, which are pivotal in cell cycle regulation. 
Canela et al. (2006) employed synthetic combinatorial 
peptide libraries and discovered a D-amino acid 
hexapeptide, non-competitive for either ATP or 
histone H1, that interfered with the formation of 
the cdk2-cyclin A complex. Furthermore, a cell-
permeable derivative of this peptide induced 
apoptosis and inhibited proliferation of tumor cell 
lines [127]. 

Immunodeficiency 
The integration of viral DNA into the host 
chromosome, mediated by the enzyme integrase, 
is an essential step in the HIV life cycle. The 
enzyme has no mammalian counterpart, converting 
it in an attractive target for antiviral drug design. 
Li et al. (2006) employed the “sequence walk” 
strategy across the entire 288 residues of enzyme 
[128]. The derived peptides, encompassing 
conserved amino acids and residues known to be 
important for catalytic activity, were able to 
inhibit the activity of the HIV-1 integrase protein. 
Hayouka et al. (2007) presented a strategy for 
inhibiting proteins by “shiftides”, which are ligand 
peptides that specifically bind to an inactive 
oligomeric state of a disease-related protein and 
modulate its activity by shifting the oligomerization 
equilibrium of the protein (Figure 1D) [129]. They 
were able to block the integrase enzyme by using 
peptides derived from its cellular-binding protein, 
LEDGF/p75, which specifically inhibited integrase 
activity by a non-competitive mechanism. Also 
working with the enzyme integrase, Zawahir & 
Neamati (2006) derived peptides from the HIV-1 
HXB2 Pol gene sequence [130]. They tested 
them for inhibitory activity against wild-type and 
mutant integrase, and found that the most potent 
blocker peptide corresponded to a region of the 
reverse transcriptase subunit of the Pol protein. 
The active site of HIV-1 protease has been 
targeted for inhibitor design, resulting in potent 
blockers [131]. However, their use has been 
 

designed an 11-mer peptide variant derived from 
the interface contact of CK2α/CK2β subunits, 
which was able to antagonize the interaction 
between the CK2 subunits, and to inhibit the 
assembly of the CK2 holoenzyme complex, 
in vitro and in vivo. 
Interleukin-6 (IL-6) signal is transduced through a 
membrane glycoprotein, gp130, which associates 
with IL-6 receptor (IL-6-R). This cytokine acts on 
a wide range of tissues with a variety of biological 
activities, including cell proliferation. Since viral 
IL-6 has been shown to mimic human IL-6 
functions, Sudarman et al. (2008) designed and 
synthesized peptides based on the crystal structure 
of extracellular domains of gp130 in complex 
with viral IL-6 [123]. These peptides were shown 
to block the interaction of gp130 with viral IL-6, 
as well as the stimulation of viral IL-6-induced 
cell proliferation. 

Apoptosis 
Apoptosis, or programmed cell death, is a critical 
cell process in normal development and homeostasis 
of multicellular organisms. Inappropriate regulation 
of apoptosis has been implicated in many human 
diseases, including cancer. Thus, targeting critical 
apoptosis regulators is an attractive approach for 
the development of new classes of therapies. A 
successful example is the design of an inhibitor of
XIAP, a central apoptosis regulator that inhibits 
caspase-3/-7 through its BIR2 and BIR3 domains. 
The natural inhibitor, Smac, antagonizes XIAP by 
targeting both BIR2 and BIR3 domains. Zobel et al. 
(2006) designed a potent second mitochondrial 
activator of caspases (Smac) mimetic by using the 
crystal structure of a peptide displaying high 
binding affinity, but no measurable biological 
activity [124]. The authors translated the key 
components of binding of the peptide onto a non-
peptide scaffold with enhanced drug-like properties. 
Similarly, Sun et al. (2007) synthesized and 
characterized a non-peptide, cell-permeable, small- 
molecule which mimics Smac protein for 
targeting XIAP, being 7000 times more potent 
than the natural Smac peptide [125]. 
BCL-2 family proteins constitute a critical control 
point for the regulation of apoptosis. Protein 
interaction between BCL-2 members is a 
prominent mechanism of control and is mediated
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Figure 4. Development status of therapeutic peptides. (A) Distributions of therapeutic peptides by development 
status; the insert shows the distribution of development peptides by their state in clinical trials. (B) Distribution of 
development peptides by therapeutic indications. Data from peptide therapeutics foundation: Development trends for 
peptide foundation (2010), http://clinicaltrials.gov/ and http://www.fda.gov/. 

Figure 3. TRPducins modulate the TRPV1 channels. The figure represents the full model of TRPV1 channel 
inserted in a lipid bilayer [146]. The TRPV1 channel tetramer was represented in ribbons, the subunits were drawn 
in different colors, and lipid bilayer was colored in cyan. A whole subunit, as well as the big cytoplasmic N-
terminus, has been removed for clarity. The transmembrane regions span the membrane, while C-terminus protrudes 
to the cytosolic space. According to the model and the experimental data, the transmembrane S6 and the contiguous 
C-terminus of each subunit converge in the cytoplasmic mouth. The most active TRPducin (represented in red 
surface) was derived from the linker connecting the S6 and proximal C-terminus [110]. The palmytoilation of the 
TRPducin allowed the peptide to reach the cytosolic space, interfering with tetramerization and normal activity of 
TRPV1 channel. 
 



flexibility to adapt to almost any kind of surface.
Peptide drugs offer clear advantages for peptidic 
therapies: target selectivity, the possibility to act 
on big surfaces, high flexibility, reduced toxicity, 
and a large knowledge-based body of experimental 
and structural data. 
There is a clear need to combine experimental 
methods (X-ray, NMR, EM, etc.) and computational 
predictions (docking, VS, bioinformatics, etc.) to 
expand the structural information of protein 
assemblies. The recent advances in peptide synthesis 
and the development of computational methods 
facilitate the rational design of peptidic compounds. 
The computational tools allow modeling peptide-
protein interactions and contribute to the modulation 
of these interactions. Docking and virtual screening 
approaches allow searching of optimal interactions 
at wide scale. The developments in energy 
potentials improve determination of binding 
affinities between peptide and proteins. Machine 
learning approaches help the discrimination between 
binders and non-binders to build classification 
models based on interaction energy [136]. All 
advances in protein design, protein folding, 
docking and dynamics directly benefit peptide 
drug discovery [27]. The peptidomimetic field in 
turn takes advantage of the biochemical studies, 
synthesis advances and computational techniques 
[30]. 
In contrast to the artificially constructed random 
peptide libraries, many of the used peptides or 
awaiting approval ones are directly derived from 
natural sequences. One plausible explanation is 
that natural subdomains have been selected for 
stability by evolution [11]. Peptide optimization is 
also possible with the purpose of increasing 
stability, affinity and specificity. Either natural or 
modified peptides can in turn be readily subjected 
to wet-laboratory experiments and concomitant 
lead optimization. 
Despite the limitations to the use of peptides as 
drug candidates, there is a considerable and 
probably unexpected number of peptides currently 
available as drugs or in clinical trials. This is 
because peptides and derivatives can be used in 
multiple pathologies such as arthritis, asthma, 
diabetes, allergy, infective diseases, inflammation, 
obesity, immune diseases, oncology, cardiovascular 
diseases, pain, osteoporosis, etc. [137]. One of the 
 

limited due to the high mutation rate of HIV that 
leads to drug resistance. Shultz et al. (2004) 
targeted the four-stranded β-sheet dimerization 
interface for inhibition, since this region is 
relatively free of mutations [132]. The authors 
designed a focused library based on the interfacial 
peptides, and found an effective inhibition of the 
enzyme dimerization. This finding confirmed the 
oligomerization surface as an alternative region 
for targeting the active site. 

Amyloid formation 
Amyloid diseases such as Alzheimer's are 
associated with the transformation of normally 
soluble proteins into amyloid fibrils protein 
aggregates. Inhibitors of pathological amyloid 
fibril formation may be useful as therapeutics if 
they are sufficiently specific. Abe et al. (2007) 
screened α-synuclein-binding peptides by in silico 
panning to obtain an effective aggregation 
inhibitor. Using a genetic algorithm and a docking 
simulation, the study aimed at discovering 
peptides able to interact with the region involved 
in amyloid fibril formation. The selected peptides 
were able to bind to α-synuclein, thus affecting its 
aggregation [133]. Sievers et al. (2011) employed 
computer-aided, structure-based design, with 
known atomic structures of segments of amyloid 
fibres as templates, to evolve a D-amino-acid 
peptide that delayed amyloid fibril formation of 
the tau protein associated with Alzheimer’s 
disease [134]. 
 
OUTLOOK 
Protein-protein interaction provided by globular 
domains or short peptides represents the major 
complex network within the cell. It is estimated 
that peptide-protein interactions represent near to  
15-40% of all interactions [135], which makes 
peptide and peptidomimetic discovery of great 
applicability and interest as therapeutic targets. 
Peptides derived from protein interfaces are 
readily good candidates for inhibitory purposes 
because although they are unstructured in 
solution, they adopt the correct conformation 
upon binding [25]. Much evidence has been found 
on the efficacy and selectivity of peptides and 
peptidomimetics to maximize binding interactions. 
So, there is a compromise between spatial 
organization of chemical groups, and enough 
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challenges is the central nervous system, the 
major therapeutic area with great potential for 
peptides. Unfortunately, most peptides are unable 
to cross the blood brain barrier by passive 
transport because of the high molecular mass and 
hydrophilicity. In this respect, peptide-based vectors 
entering the barrier by absorptive-mediated [118] 
or receptor-mediated transport [138] can contribute 
to the development of therapeutic peptides 
targeted to the central nervous system [19]. 
Although peptides have been studied as drugs for 
decades, the rate of entry into clinical study was 
low prior to the 1980s. The average number of 
new candidates entering study per year has 
steadily increased; this number was 1.2 per year in 
the 1970s, 4.6 per year in the 1980s, 9.7 per year 
in the 1990s, and 16.8 per year so far in the 2000s. 
In 2003 the global therapeutic peptide market 
amounted to 1 billion USD and currently more 
than 54 peptide based products are commercially 
available with 6 in the registration process. In 
2010, six therapeutics peptides have reached 
global sales over US$1 billion. 
Looking forward, the market for peptide drugs 
will begin to show increased growth as drug 
candidates in Phase III and Phase II trials gain 
approval and enter the market (Figure 4). The 
peptide drug pipeline is robust, with the number 
of disease indications being investigated growing 
from 29 to 64. Disease areas with significant 
peptide therapeutic development activity include 
cancer, infection, and pain-all billion-dollar 
markets. 
The use of peptides and peptidomimetics, instead 
of being an alternative to the use of small molecules, 
may represent an efficient complementary strategy 
in drug discovery targeted against protein-protein 
interaction networks. 
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